基于小分子材料的新型高性能有機(jī)發(fā)光二極管的制備
發(fā)布時(shí)間:2018-02-12 22:26
本文關(guān)鍵詞: 有機(jī)電致發(fā)光 摻雜 發(fā)光區(qū)間 效率衰減 載流子分布 出處:《長春工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:有機(jī)電致發(fā)光器件(OLED)與其他顯示器件相比具有許多優(yōu)點(diǎn)。例如主動(dòng)發(fā)光,不需要背光源,視角寬、亮度高、可彎曲、全固化等。雖然目前有機(jī)電致發(fā)光取得重大的進(jìn)展,其產(chǎn)業(yè)化進(jìn)程也在不斷推進(jìn),但依然存在一些重要的問題,比如壽命問題、效率問題、色度問題、大尺寸問題以及工藝技術(shù)問題等等。要實(shí)現(xiàn)OLED的完全實(shí)用化、市場化,還有很多重大的理論和技術(shù)問題需要解決。本論文“基于小分子材料的新型高性能有機(jī)發(fā)光二極管的制備”通過探索有機(jī)電致發(fā)光機(jī)理,設(shè)計(jì)新型器件結(jié)構(gòu),并優(yōu)化器件制備工藝,從而達(dá)到提高電致發(fā)光效率,降低工作電壓,降低效率衰減,從而提高器件整體性能。(1)首先通過將Alq3精密摻雜到NPB薄膜中作為載流子傳輸層,設(shè)計(jì)和制作了一系列電子傳輸型器件,系統(tǒng)的研究了Alq3摻雜濃度對電子注入以及傳輸過程的影響。電壓-電流密度曲線圖表明:0.2%是敏化電子從空穴阻擋層注入到主體分子的最佳濃度,而0.6%則是電子傳輸主導(dǎo)機(jī)制轉(zhuǎn)變的關(guān)鍵濃度。研究結(jié)果表明,當(dāng)摻雜濃度高于0.6%時(shí),電子在Alq3分子間的跳躍成為電子傳輸?shù)闹鲗?dǎo)機(jī)制。(2)以TcTa和26DCzPPy分別為第一發(fā)光層和第二發(fā)光層的主體材料,設(shè)計(jì)雙發(fā)光層器件結(jié)構(gòu),進(jìn)一步提高綠光材料(tfmppy)2Ir(tpip)的性能。與單發(fā)光層器件相比,這種器件結(jié)構(gòu)能夠有效地拓寬發(fā)光區(qū)間,平衡載流子的分布,并延緩效率的衰減。制備出結(jié)構(gòu)為ITO/MoO3(3 nm)/TAPC(50 nm)/(tfmppy)2Ir(tpip)(6 wt%):TcTa(5nm)/(tfmppy)2Ir(tpip)(6 wt%):26DCzPPy(11 nm)/TmPyPB(45 nm)/LiF(1 nm)/Al(120nm)的綠色有機(jī)電致發(fā)光器件。器件的啟亮電壓為3.2 V,最大亮度、最大電流效率、最大功率效率和最大外量子效率分別為113610 cd/m2、112.30 cd/A、97.95 lm/W和29.4%,色坐標(biāo)為(0.294,0.662)。在亮度為1000 cd/m2時(shí),器件電流效率和外量子效率分別為107.60 cd/A和28.1%。(3)以此雙發(fā)光層器件結(jié)構(gòu)為基礎(chǔ),通過優(yōu)化摻雜濃度和調(diào)整發(fā)光層厚度來進(jìn)一步提高紅光材料[Ir(MDQ)2(acac)]的性能。制備出結(jié)構(gòu)為ITO/MoO3(3 nm)/TAPC(40nm)/Ir(MDQ)2(acac)(2.0 wt%):TcTa(10 nm)/Ir(MDQ)2(acac)(2.0 wt%):26DCzPPy(10nm)/TmPy PB(40 nm)/LiF(1 nm)/Al(100 nm)的紅色有機(jī)電致發(fā)光器件。器件的啟亮電壓為3.4 V,最大亮度、最大電流效率、最大功率效率和最大外量子效率分別為73675cd/m2、44.76 cd/A、40.19 lm/W和15.5%,色坐標(biāo)為(0.556,0.435)。在亮度為1000cd/m2時(shí),器件電流效率和外量子效率分別為40.59 cd/A和14.1%。
[Abstract]:Organic electroluminescent devices (OLED) have many advantages over other display devices, such as active luminescence, no backlight, wide viewing angle, high brightness, bending, full curing, etc. But there are still some important problems, such as life, efficiency, chromaticity, large size, technology and so on. There are still many important theoretical and technical problems to be solved. In this thesis, "Fabrication of novel High performance Organic Light-emitting Diode based on small Molecular Materials", a novel device structure is designed by exploring the mechanism of organic electroluminescence. In order to improve the electroluminescence efficiency, reduce the working voltage and reduce the efficiency attenuation, the device can improve the overall performance of the device by doping Alq3 into the NPB film as carrier transport layer. A series of electronic transmission devices are designed and fabricated. The effect of doping concentration of Alq3 on the electron injection and its transport is systematically studied. The voltage-current density curve shows that the optimal concentration of the sensitized electron injected from the hole barrier layer to the host molecule is 0.2%. And 0.6% is the key concentration in the transition of electron transport mechanism. The results show that when the doping concentration is higher than 0.6, The electronic hopping between Alq3 molecules becomes the dominant mechanism of electron transport. (2) using TcTa and 26DCzPPy as the main materials of the first and second luminescent layers respectively, the structure of the double light-emitting layer device is designed. Compared with the single luminescent layer device, this device structure can effectively widen the luminescence range and balance the carrier distribution. The green organic electroluminescent devices with the structure of ITO/MoO3(3 nm)/TAPC(50 nm)/(tfmppy)2Ir(tpip)(6 wt%):TcTa(5nm)/(tfmppy)2Ir(tpip)(6 wt%):26DCzPPy(11 nm)/TmPyPB(45 nm)/LiF(1 NMU / AlN 120nm have been fabricated. The starting voltage of the device is 3.2 V, the maximum brightness and current efficiency are 3.2 V, the maximum current efficiency, the maximum luminance, the maximum current efficiency, the maximum luminance, the maximum current efficiency, the maximum luminance and the maximum current efficiency. The maximum power efficiency and the maximum external quantum efficiency are 113610 CD / m ~ (2) and 112.30 CD / A 97.95 lm/W and 29.4 lm/W, respectively, and the color coordinate is 0.294 ~ 0.6620.The current efficiency and the external quantum efficiency of the device are 107.60 cd/A and 28.1um 路L ~ (-3), respectively, when the luminance is 1 000 cd/m2. The red organic electroluminescent devices with the structure of ITO/MoO3(3 nm)/TAPC(40nm)/Ir(MDQ)2(acac)(2.0 wt%):TcTa(10 nm)/Ir(MDQ)2(acac)(2.0 wt%):26DCzPPy(10nm)/TmPy PB(40 nm)/LiF(1 nm)/Al(100 Nm were fabricated by optimizing the doping concentration and adjusting the thickness of the luminescent layer to further improve the properties of the red light material. The starting voltage of the device was 3.4 V, and the maximum brightness was obtained. The maximum current efficiency, the maximum power efficiency and the maximum external quantum efficiency are 73675cd / m2 and 44.76cd/ m2n 40.19 lm/W and 15.5cm, respectively, and the color coordinate is 0.556n0.4350.The current efficiency and the external quantum efficiency of the device are 40.59 cd/A and 14.1cm ~ (-1), respectively, when the luminance is 1000cdr ~ (m ~ 2).
【學(xué)位授予單位】:長春工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN383.1
【參考文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前1條
1 王俊西;LiF修飾電極的有機(jī)電致發(fā)光器件光電特性的研究[D];中南大學(xué);2009年
,本文編號(hào):1506703
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1506703.html
最近更新
教材專著