移動(dòng)焊接機(jī)器人的軌跡規(guī)劃與跟蹤控制
本文關(guān)鍵詞: 移動(dòng)焊接機(jī)器人 焊縫識(shí)別 軌跡規(guī)劃 跟蹤控制 滑模變結(jié)構(gòu)控制 出處:《南京理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著工業(yè)4.0的提出和《中國制造2025》的頒布,我國工業(yè)生產(chǎn)朝著自動(dòng)化,智能化、信息化方向發(fā)展已經(jīng)成為必然的趨勢(shì)。焊接機(jī)器人融合了識(shí)別、焊接、控制等眾多技術(shù),反應(yīng)了一個(gè)國家的科技水平。本文以移動(dòng)焊接機(jī)器人為研究對(duì)象,主要研究了焊縫識(shí)別算法、移動(dòng)焊接機(jī)器人運(yùn)動(dòng)學(xué)與動(dòng)力學(xué)模型、軌跡規(guī)劃和跟蹤控制的方法。1焊縫識(shí)別算法采用中值濾波和均值濾波算法對(duì)焊縫及周邊的圖像進(jìn)行處理,削弱干擾,并采用Sobel邊緣檢測(cè)算法提取焊縫的邊緣曲線,從而達(dá)到焊縫識(shí)別的目的。2運(yùn)動(dòng)學(xué)與動(dòng)力學(xué)模型首先分析了移動(dòng)平臺(tái)的非完整性,并采用奇次變換的方法建立移動(dòng)平臺(tái)的運(yùn)動(dòng)模型。然后采用Denavit-Hartenberg建模方法建立了機(jī)械臂的運(yùn)動(dòng)學(xué)模型。然后結(jié)合移動(dòng)平臺(tái)和機(jī)械臂的運(yùn)動(dòng)模型建立了焊接機(jī)器人的運(yùn)動(dòng)學(xué)模型,最后采用拉格朗日力學(xué)法建立了移動(dòng)焊接機(jī)器人的動(dòng)力學(xué)方程。3軌跡規(guī)劃首先假設(shè)移動(dòng)平臺(tái)做直線運(yùn)動(dòng),研究了機(jī)械臂的軌跡規(guī)劃問題。采用梯度下降法與二分法結(jié)合的算法對(duì)機(jī)械臂的關(guān)節(jié)軌跡進(jìn)行優(yōu)化,并通過仿真驗(yàn)證了算法的有效性。然后針對(duì)大曲度焊縫,研究了移動(dòng)平臺(tái)和機(jī)械臂的同步規(guī)劃問題。針對(duì)同步規(guī)劃問題,首先研究了機(jī)械臂末端位置點(diǎn)到點(diǎn)的規(guī)劃問題,通過分析機(jī)械臂末端點(diǎn)到點(diǎn)的運(yùn)動(dòng)特點(diǎn)總結(jié)出規(guī)劃任務(wù)的實(shí)質(zhì)是選擇移動(dòng)平臺(tái)運(yùn)動(dòng)所圍繞圓心的位置,并采用基于梯度下降法與二分法結(jié)合的優(yōu)化算法對(duì)移動(dòng)平臺(tái)輪子和機(jī)械臂的關(guān)節(jié)運(yùn)動(dòng)進(jìn)行了規(guī)劃,仿真結(jié)果顯示機(jī)械臂的末端較好的跟蹤離散化后焊縫軌跡上的點(diǎn)。然后研究了機(jī)械臂末端的速度規(guī)劃問題,采用遺傳算法規(guī)劃移動(dòng)平臺(tái)左右輪的角速度和機(jī)械臂的關(guān)節(jié)速度曲線,使得機(jī)械臂的末端速度方向與焊縫的切線方向保持一致,從而實(shí)現(xiàn)機(jī)械臂末端跟蹤焊縫軌跡。通過仿真驗(yàn)證規(guī)劃方法的有效性。4基于滑模變結(jié)構(gòu)控制的移動(dòng)焊接機(jī)器人控制器研究首先設(shè)計(jì)了移動(dòng)焊接機(jī)器人的線性滑模切換面。然后在移動(dòng)焊接機(jī)器人的動(dòng)力學(xué)方程的基礎(chǔ)上設(shè)計(jì)了基于指數(shù)趨近律的控制律,并采用飽和函數(shù)削弱滑模變結(jié)構(gòu)控制的抖振。最后采用S函數(shù)在Simulink中搭建了滑模控制器和移動(dòng)焊接機(jī)器人的動(dòng)力學(xué)模型。通過仿真驗(yàn)證了滑?刂破鞯挠行,不僅削弱了抖振現(xiàn)象,而且提高了系統(tǒng)的魯棒性和軌跡跟蹤的效果。
[Abstract]:With the introduction of industry 4.0 and the promulgation of "made in China 2025", the development of China's industrial production towards automation, intelligence and information has become an inevitable trend. Welding robot fusion recognition. Welding, control and many other technologies reflect the scientific and technological level of a country. In this paper, the mobile welding robot as the research object, mainly studied the weld identification algorithm, kinematics and dynamics model of mobile welding robot. Methods of trajectory Planning and tracking Control. 1. The median filter and mean filter algorithm are used to process the images of the weld seam and its periphery, so as to reduce the interference. The Sobel edge detection algorithm is used to extract the edge curve of the weld seam. 2. The kinematics and dynamics model is used to analyze the non-integrity of the mobile platform. The motion model of mobile platform is established by odd degree transformation, and then the kinematics model of manipulator is established by using Denavit-Hartenberg modeling method. The kinematics model of welding robot is established. Finally, the dynamic equation .3 trajectory planning of mobile welding robot is established by using Lagrange mechanics method. Firstly, the linear motion of mobile platform is assumed. The trajectory planning problem of the manipulator is studied. The joint trajectory of the manipulator is optimized by using gradient descent method and dichotomy, and the effectiveness of the algorithm is verified by simulation. The synchronization planning problem of mobile platform and manipulator is studied. Aiming at the synchronization planning problem, the point to point planning of the end of the manipulator is first studied. By analyzing the motion characteristics of the end point to point of the manipulator, it is concluded that the essence of the planning task is to select the position around the center of the motion of the mobile platform. An optimization algorithm based on gradient descent and dichotomy is used to plan the joint motion of the wheel and manipulator of the mobile platform. The simulation results show that the end of the manipulator can track the points on the weld trajectory after discretization. Then the velocity planning problem of the end of the manipulator is studied. Genetic algorithm is used to plan the angular velocity of the left and right wheels of the mobile platform and the joint velocity curve of the manipulator, so that the direction of the end velocity of the manipulator is consistent with the tangent direction of the weld. The effectiveness of the planning method is verified by simulation. 4. The research of mobile welding robot controller based on sliding mode variable structure control. Firstly, the linear slip of mobile welding robot is designed. Then the control law based on exponential approach law is designed based on the dynamic equation of mobile welding robot. Finally, the dynamic models of sliding mode controller and mobile welding robot are built by S function in Simulink. The sliding mode control is verified by simulation. The effectiveness of the machine. Not only the chattering phenomenon is weakened, but also the robustness of the system and the effect of trajectory tracking are improved.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【參考文獻(xiàn)】
相關(guān)期刊論文 前7條
1 付曉龍;何建萍;王付鑫;;焊接機(jī)器人軌跡規(guī)劃的研究現(xiàn)狀[J];輕工機(jī)械;2015年02期
2 呂學(xué)勤;張軻;吳毅雄;;移動(dòng)焊接機(jī)器人軌跡跟蹤控制機(jī)制及實(shí)驗(yàn)[J];上海交通大學(xué)學(xué)報(bào);2015年03期
3 王勝華;都東;曾凱;鄒怡蓉;;基于紋理特征的焊縫識(shí)別方法[J];焊接學(xué)報(bào);2008年11期
4 蔣力培;鄒勇;薛龍;戴為志;張衛(wèi)義;;奧運(yùn)(鳥巢)工程焊接機(jī)器人研究與應(yīng)用[J];電焊機(jī);2008年04期
5 郭丙華;胡躍明;;三連桿移動(dòng)機(jī)械臂模型與運(yùn)動(dòng)規(guī)劃[J];控制理論與應(yīng)用;2005年06期
6 毛志偉;張華;鄭國云;;旋轉(zhuǎn)電弧傳感彎曲焊縫移動(dòng)焊接機(jī)器人結(jié)構(gòu)設(shè)計(jì)[J];焊接學(xué)報(bào);2005年11期
7 徐德,趙曉光,涂志國,譚民;基于結(jié)構(gòu)光立體視覺的焊縫測(cè)量[J];焊接學(xué)報(bào);2004年05期
,本文編號(hào):1478004
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1478004.html