基于SA-PSO的Plug-In混合動(dòng)力汽車(chē)模糊控制策略?xún)?yōu)化研究
本文關(guān)鍵詞: Plug-In混合動(dòng)力汽車(chē) 能量管理策略 模糊規(guī)則 再生制動(dòng) 模擬退火粒子群算法 工況識(shí)別 出處:《山東大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:面臨著全球能源短缺和環(huán)境污染的嚴(yán)峻現(xiàn)實(shí),傳統(tǒng)汽車(chē)行業(yè)必須轉(zhuǎn)型以實(shí)現(xiàn)汽車(chē)行業(yè)的可持續(xù)發(fā)展,在這一轉(zhuǎn)型探索中,開(kāi)發(fā)低油耗、低排放的新能源汽車(chē)已然成為當(dāng)今汽車(chē)行業(yè)首要任務(wù)。在眾多的新能源汽車(chē)中,Plug-In混合動(dòng)力汽車(chē)(Plug-In Hybrid Electric Vehicle,簡(jiǎn)稱(chēng)PHEV)以其節(jié)能環(huán)保、性能優(yōu)良的特點(diǎn)深受人們歡迎。整車(chē)能量管理作為PHEV 一大核心控制問(wèn)題,直接影響著車(chē)輛的燃油經(jīng)濟(jì)性和動(dòng)力性能,是PHEV實(shí)現(xiàn)低油耗和低排放的關(guān)鍵。能量管理的作用是通過(guò)協(xié)調(diào)控制發(fā)動(dòng)機(jī)和動(dòng)力電池間能量流動(dòng)的方向和大小,從而滿足車(chē)輛動(dòng)力需求,并提升PHEV的燃油經(jīng)濟(jì)性。本文針對(duì)PHEV的能量管理問(wèn)題,以提高燃油經(jīng)濟(jì)性為目標(biāo),從驅(qū)動(dòng)和制動(dòng)兩個(gè)方面著手研究。動(dòng)力系統(tǒng)的總成匹配是實(shí)現(xiàn)能量管理的基礎(chǔ)。本文針對(duì)并聯(lián)PHEV,在AVL CRUISE仿真軟件中建立了整車(chē)模型,結(jié)合車(chē)輛參數(shù)及動(dòng)力性能要求對(duì)發(fā)動(dòng)機(jī)、電動(dòng)機(jī)、動(dòng)力電池等部件進(jìn)行參數(shù)匹配,并通過(guò)仿真實(shí)驗(yàn)對(duì)動(dòng)力性能進(jìn)行了驗(yàn)證。本文首先設(shè)計(jì)了基于模糊規(guī)則的PHEV能量管理策略,選擇電池SOC、車(chē)速及發(fā)動(dòng)機(jī)工作效率作為策略的控制依據(jù)?紤]到PHEV在行駛過(guò)程中因工作模式的不斷切換導(dǎo)致發(fā)動(dòng)機(jī)頻繁啟停并引起動(dòng)力系統(tǒng)沖擊,從而影響行車(chē)平順性和乘車(chē)舒適性。本文在能量管理策略中添加了發(fā)動(dòng)機(jī)的啟?刂撇呗,顯著減少了發(fā)動(dòng)機(jī)的啟停頻率。目前大多數(shù)能量管理策略側(cè)重于對(duì)驅(qū)動(dòng)階段的能量流進(jìn)行優(yōu)化。事實(shí)上,在啟停頻繁的市區(qū)工況存在著可觀的制動(dòng)能量,充分回收這些制動(dòng)能量對(duì)于改善PHEV的燃油經(jīng)濟(jì)性非常重要。但是,制動(dòng)能量的回收常與制動(dòng)性能相矛盾,在設(shè)計(jì)再生制動(dòng)策略時(shí)還需要考慮制動(dòng)性能。因此,本文對(duì)PHEV的再生制動(dòng)系統(tǒng)進(jìn)行了綜合分析,并設(shè)計(jì)了模糊再生制動(dòng)策略。在三種典型循環(huán)工況下的仿真結(jié)果表明,該再生制動(dòng)策略能夠顯著提高PHEV的燃油經(jīng)濟(jì)性,并且相對(duì)其他再生制動(dòng)策略有著一定優(yōu)越性。針對(duì)模糊控制策略依然存在著依賴(lài)工程經(jīng)驗(yàn)的缺陷,本文采用了模擬退火粒子群算法對(duì)文中設(shè)計(jì)的整車(chē)能量管理模糊控制器進(jìn)行參數(shù)優(yōu)化。同時(shí),為了提升優(yōu)化參數(shù)對(duì)不同工況的適應(yīng)性,本文采用兩種方法進(jìn)行改進(jìn):(1)采用綜合工況優(yōu)化方式,將 HWFET、LA92、Ja1015、NEDC、MANHATTAN 和 NYCC典型工況組成一個(gè)綜合工況,然后在綜合工況進(jìn)行能量管理優(yōu)化。(2)采用工況識(shí)別技術(shù),將(1)中的綜合工況劃分成低速、中速、高速三種不同工況,并對(duì)每種工況進(jìn)行能量管理優(yōu)化,最后通過(guò)在線工況識(shí)別技術(shù),選擇適當(dāng)?shù)目刂茀?shù)。兩種策略還分別在其他工況下進(jìn)行了仿真驗(yàn)證。結(jié)果表明,綜合工況優(yōu)化方式和工況識(shí)別技術(shù)都能進(jìn)一步提升PHEV的燃油經(jīng)濟(jì)性,且優(yōu)化結(jié)果同樣適用于其他工況。
[Abstract]:Facing the severe reality of global energy shortage and environmental pollution, the traditional automobile industry must be transformed to realize the sustainable development of the automobile industry. In this transformation exploration, the development of low fuel consumption. Low-emission new energy vehicles have become the top priority of the automotive industry today. Among the many new energy vehicles. Plug-In hybrid vehicle Plug-In Hybrid Electric vehicle (PHEV) is energy saving and environmental protection. As a core control problem of PHEV, vehicle energy management has a direct impact on vehicle fuel economy and power performance. The function of energy management is to control the direction and size of energy flow between engine and power battery in order to meet the vehicle power demand. And improve the fuel economy of PHEV. This paper aims at improving the fuel economy of PHEV. The power system assembly matching is the basis of energy management. The whole vehicle model is established in the AVL CRUISE simulation software for parallel pHEV. Combined with vehicle parameters and dynamic performance requirements of the engine, motor, power battery and other components for parameter matching. The dynamic performance is verified by simulation experiments. Firstly, the PHEV energy management strategy based on fuzzy rules is designed, and the battery SOC is selected. The speed and efficiency of the engine are considered as the control basis of the strategy. Considering the frequent start and stop of the engine and the impact of the power system due to the continuous switching of the working mode during the driving process of PHEV. In order to affect the ride comfort and ride comfort, this paper adds the engine start and stop control strategy to the energy management strategy. Most of the current energy management strategies focus on optimizing the energy flow in the drive phase. In fact, there is considerable braking energy in the urban areas where the engine starts and stops frequently. Fully recovering these braking energy is very important to improve the fuel economy of PHEV. However, the recovery of braking energy is often inconsistent with the braking performance. The braking performance should be considered when designing regenerative braking strategy. Therefore, the regenerative braking system of PHEV is comprehensively analyzed in this paper. The fuzzy regenerative braking strategy is designed. The simulation results under three typical cycle conditions show that the regenerative braking strategy can significantly improve the fuel economy of PHEV. Compared with other regenerative braking strategies, the fuzzy control strategy still has the defect of relying on engineering experience. In this paper, the simulated annealing particle swarm optimization algorithm is used to optimize the parameters of the vehicle energy management fuzzy controller designed in this paper. At the same time, in order to improve the adaptability of the optimized parameters to different working conditions. In this paper, two methods are used to improve the system. (1) the HWFETT LA92Ja1015NDC is optimized under the integrated working conditions. MANHATTAN and NYCC typical operating conditions constitute a comprehensive working condition, and then in the integrated conditions of energy management optimization. 2) the use of condition identification technology. The integrated working conditions are divided into three different working conditions: low speed, medium speed and high speed, and the energy management is optimized for each condition. Finally, the on-line working condition identification technology is adopted. The two strategies are also simulated under other operating conditions. The results show that the integrated mode of operation optimization and condition identification technology can further improve the fuel economy of PHEV. The optimization results are also applicable to other conditions.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:U469.7;TP273.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 詹森;秦大同;曾育平;;基于多循環(huán)工況的混合動(dòng)力汽車(chē)參數(shù)優(yōu)化研究[J];汽車(chē)工程;2016年08期
2 張志強(qiáng);張曉莉;熊禹;韋杰宏;伍健;;插電式混合動(dòng)力汽車(chē)技術(shù)特點(diǎn)綜述[J];汽車(chē)實(shí)用技術(shù);2016年06期
3 楊東徽;李軍;;淺析混合動(dòng)力汽車(chē)控制策略[J];汽車(chē)工業(yè)研究;2015年08期
4 蔣科軍;何仁;束馳;王群山;;混合動(dòng)力汽車(chē)動(dòng)力耦合技術(shù)綜述[J];機(jī)械傳動(dòng);2015年04期
5 張明凱;;AVL Cruise和AVL Driver聯(lián)合虛擬仿真在整車(chē)性能開(kāi)發(fā)和評(píng)價(jià)方面的應(yīng)用[J];工業(yè)技術(shù)創(chuàng)新;2014年05期
6 邱利宏;錢(qián)立軍;程偉;王振國(guó);;插電式串聯(lián)混合動(dòng)力汽車(chē)參數(shù)匹配及控制策略研究[J];汽車(chē)工程學(xué)報(bào);2014年04期
7 錢(qián)人一;;雪佛蘭Volt和歐寶Ampera帶增程器的Voltec動(dòng)力系統(tǒng)(二)[J];汽車(chē)與配件;2012年15期
8 劉輝;王偉達(dá);何嬌;項(xiàng)昌樂(lè);;基于模糊控制的混合動(dòng)力電動(dòng)車(chē)再生制動(dòng)系統(tǒng)的建模與仿真[J];汽車(chē)工程;2012年01期
9 王強(qiáng);;利用FMI適配部件擴(kuò)展IPG CarMaker[J];河南機(jī)電高等專(zhuān)科學(xué)校學(xué)報(bào);2012年01期
10 崔納新;步剛;吳劍;符曉玲;張承慧;;Plug-In并聯(lián)式混合動(dòng)力汽車(chē)實(shí)時(shí)優(yōu)化能量管理策略[J];電工技術(shù)學(xué)報(bào);2011年11期
相關(guān)博士學(xué)位論文 前5條
1 王光平;并聯(lián)插電式混合動(dòng)力汽車(chē)控制技術(shù)研究[D];吉林大學(xué);2016年
2 楊官龍;基于駕駛意圖與工況識(shí)別的插電式混合動(dòng)力汽車(chē)能量管理策略研究[D];重慶大學(xué);2014年
3 顧瑞蘭;促進(jìn)我國(guó)新能源汽車(chē)產(chǎn)業(yè)發(fā)展的財(cái)稅政策研究[D];財(cái)政部財(cái)政科學(xué)研究所;2013年
4 趙國(guó)柱;電動(dòng)汽車(chē)再生制動(dòng)若干關(guān)鍵問(wèn)題研究[D];南京航空航天大學(xué);2012年
5 吳劍;并聯(lián)式混合動(dòng)力汽車(chē)能量管理策略?xún)?yōu)化研究[D];山東大學(xué);2008年
相關(guān)碩士學(xué)位論文 前7條
1 解慶波;基于駕駛意圖與行駛工況的混合動(dòng)力電動(dòng)汽車(chē)能量管理策略[D];重慶大學(xué);2016年
2 張潔麗;基于模型預(yù)測(cè)控制的插電式混合動(dòng)力客車(chē)能量管理策略研究[D];北京理工大學(xué);2016年
3 賴(lài)昊翔;并聯(lián)型混合動(dòng)力汽車(chē)再生制動(dòng)控制策略研究[D];吉林大學(xué);2014年
4 趙新慶;基于CVT的插電式混合動(dòng)力汽車(chē)能量管理策略研究[D];重慶大學(xué);2014年
5 龐巖;混合動(dòng)力汽車(chē)再生制動(dòng)與防抱死系統(tǒng)協(xié)調(diào)控制研究[D];山東大學(xué);2013年
6 步剛;Plug-In混合動(dòng)力汽車(chē)能量管理策略研究[D];山東大學(xué);2011年
7 劉雪梅;基于CVT的插電式混合動(dòng)力電動(dòng)汽車(chē)系統(tǒng)研究[D];湖南大學(xué);2009年
,本文編號(hào):1443304
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1443304.html