天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

室內監(jiān)控中移動檢測與跟蹤算法的改進與實現(xiàn)

發(fā)布時間:2018-01-07 04:05

  本文關鍵詞:室內監(jiān)控中移動檢測與跟蹤算法的改進與實現(xiàn) 出處:《東南大學》2017年碩士論文 論文類型:學位論文


  更多相關文章: 目標檢測 人體識別 目標跟蹤


【摘要】:基于智能視頻監(jiān)控的移動目標檢測、識別與跟蹤是計算機視覺領域研究的熱點,在現(xiàn)代室內安全防護系統(tǒng)中有著越來越多的應用,使用這些技術,我們可以快速獲取監(jiān)控區(qū)域中感興趣的前景目標、識別前景目標,并對前景目標跟蹤形成跟蹤軌跡,為后續(xù)目標的行為分析與理解打下良好的基礎。本文以室內監(jiān)控環(huán)境為研究場景,以單目標人體為研究對象,并將單目標人體的檢測、識別以及跟蹤作為本文研究的主要內容,旨在通過對比分析現(xiàn)有的移動目標檢測與跟蹤算法,改進現(xiàn)有算法的某些不足,避免監(jiān)控過程中常見的干擾,以提升室內智能監(jiān)控系統(tǒng)的魯棒性。本文的主要工作如下:首先,在移動目標檢測階段,針對背景減差算法對光線變化比較敏感的缺點,本文提出了基于GMM算法的背景減差算法,利用GMM算法良好的穩(wěn)定性以及對光線緩慢變化不敏感的特點,為靜態(tài)背景圖像建立背景模型。另外,針對GMM算法對光照突變適應性差的缺陷,則通過定義前景目標所占的面積比率以及光線突變持續(xù)的幀數(shù)來檢測室內光線是否發(fā)生突變。實驗表明,改進的移動目標檢測算法不僅可以完整檢測出前景目標,而且對于傳統(tǒng)的背景減差算法光線緩慢變化以及突變情況引起的檢測誤差也可以很好地解決,從而大大提升了移動目標檢測的準確率以及查全率。其次,在人體目標識別階段,針對室內監(jiān)控環(huán)境下,不同前景目標的分類問題,本文提出基于HOG特征的SVM分類器算法對前景目標進行分類,通過借助公共數(shù)據(jù)集INRIA提供的正負樣本進行分類器訓練。最后通過仿真實驗驗證了該分類算法具有較高的準確率。最后,在單目標人體跟蹤階段,針對傳統(tǒng)Camshift移動目標跟蹤算法抗遮擋性差以及目標尺度變化過大敏感性的缺點,本文提出了一種改進的Camshift目標跟蹤算法。采用對目標分塊跟蹤的方式來處理目標遮擋的問題,并通過定義目標匹配率來判斷目標不同程度的遮擋。另外,針對目標尺度變化過大引入的跟蹤誤差,本文通過將目標的幾何特征和目標的顏色特征結合起來,以更充分地描述目標,提高目標的識別率。實驗表明,改進的移動目標跟蹤算法在保證系統(tǒng)實時性的前提下,對于傳統(tǒng)的Camshift跟蹤算法抗遮擋性差以及尺度變化過大帶來的跟蹤誤差都能很好地解決,提高了移動目標跟蹤階段的魯棒性。
[Abstract]:Moving target detection based on intelligent video surveillance, recognition and tracking is a hot research field of computer vision, it has more and more application in modern interior safety protection system, the use of these techniques, we can quickly get the foreground object interested in the monitoring area, identify the foreground objects, and the prospect of the target tracking tracking trajectory lay a good foundation for the follow-up behavior analysis and understanding of the target. This paper takes the indoor monitoring environment of the scene, with a single target body as the research object, and the detection of single target recognition and tracking of the human body, as the main content of this paper is to, through the comparative analysis of moving target detection and tracking algorithm in the existing, some overcome the shortcomings of the existing algorithms, avoid common interference in the process of monitoring and control, to enhance the robustness of indoor intelligent monitoring system. The main work of this paper is as follows: first of all In moving target detection, background subtraction algorithm, aiming at the light sensitive shortcomings, proposed subtraction algorithm GMM algorithm based on the background, using the GMM algorithm and good stability to light slow change characteristics is not sensitive to the static background images to establish the background model. In addition, according to the light mutation low adaptability of the GMM algorithm, through the definition of the area occupied by the foreground object and the ratio of the number of frames to detect the light mutation for interior light mutation. Experimental results show that the moving target detection algorithm can not only detect foreground objects, but also for the traditional background subtraction detection error caused by poor light slow change and mutation algorithm the situation can be solved very well, thus greatly enhance the accuracy of moving target detection and recall. Secondly, the human target recognition stage According to the monitoring, indoor environment, classification of different objects, this paper proposes a SVM classification algorithm based on HOG feature of foreground object classification, classifier training by means of positive and negative samples of public data sets provided by INRIA. The simulation experiment verifies the accuracy of the algorithm has a high classification. Finally, in the single target tracking the body, according to the traditional Camshift mobile target tracking algorithm for anti block difference and the scale change of target large sensitivity tracking algorithm is proposed in this paper an improved Camshift target. To deal with object occlusion problem using the target block tracking, and the matching rate to determine the occlusion target different degrees by definition of target. In addition, the tracking error for the target scale change is too large is introduced, this paper will combine the color features and geometric features of the target Up to more fully describe the target, improve the recognition rate. Experimental results show that the algorithm not only guarantees the real-time system under moving target tracking is improved, the traditional Camshift tracking algorithm of anti occlusion and scale variation of the tracking error caused by the large can be a good solution to improve the robustness of mobile the target tracking stage.

【學位授予單位】:東南大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41

【參考文獻】

相關期刊論文 前8條

1 王蒙;戴亞平;;基于FAST角點檢測的局部魯棒特征[J];北京理工大學學報;2013年10期

2 ;Adaptive multi-feature tracking in particle swarm optimization based particle filter framework[J];Journal of Systems Engineering and Electronics;2012年05期

3 梁艷菊;李慶;陳大鵬;顏學究;;一種快速魯棒的LOG-FAST角點算法[J];計算機科學;2012年06期

4 張濤;費樹岷;王麗麗;;基于色彩相關直方圖和粒子濾波的目標跟蹤[J];東南大學學報(自然科學版);2011年S1期

5 裴立志;王潤生;;基于多個顏色分布模型的粒子濾波跟蹤算法[J];電路與系統(tǒng)學報;2011年01期

6 甘明剛;陳杰;劉勁;王亞楠;;一種基于三幀差分和邊緣信息的運動目標檢測方法[J];電子與信息學報;2010年04期

7 劉惟錦;章毓晉;;基于Kalman濾波和邊緣直方圖的實時目標跟蹤[J];清華大學學報(自然科學版);2008年07期

8 宋紅,石峰;基于人臉檢測與跟蹤的智能監(jiān)控系統(tǒng)[J];北京理工大學學報;2004年11期

相關碩士學位論文 前1條

1 駱勇;復雜場景下的運動目標檢測關鍵技術研究[D];上海交通大學;2012年

,

本文編號:1390891

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1390891.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶daf4e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
国产亚洲精品香蕉视频播放| 性欧美唯美尤物另类视频 | 亚洲欧美日韩综合在线成成| 午夜福利精品视频视频| 婷婷色国产精品视频一区| 欧美国产日本免费不卡| 国产一级二级三级观看| 风间中文字幕亚洲一区| 人妻亚洲一区二区三区| 丝袜破了有美女肉体免费观看 | 国产精品免费视频专区| 欧美黄色黑人一区二区| 91人妻人澡人人爽人人精品| 国产欧美日韩精品一区二| 国产精品色热综合在线| 69精品一区二区蜜桃视频| 亚洲精品国男人在线视频| 国产精品欧美激情在线观看| 91在线爽的少妇嗷嗷叫| 午夜精品在线观看视频午夜| 国产传媒一区二区三区| 午夜国产精品福利在线观看| 日本人妻丰满熟妇久久| 深夜福利欲求不满的人妻| 婷婷开心五月亚洲综合| 国产日韩中文视频一区| 国产国产精品精品在线| 国产成人精品一区在线观看| 一区二区福利在线视频| 日韩精品亚洲精品国产精品| 日本人妻免费一区二区三区| 午夜小视频成人免费看| 不卡视频免费一区二区三区| 成人日韩视频中文字幕| 欧美三级不卡在线观线看| 欧美成人欧美一级乱黄| 精品推荐国产麻豆剧传媒| 日本精品中文字幕在线视频| 国产一区二区三区午夜精品| 午夜成年人黄片免费观看| 久热99中文字幕视频在线|