油菜角果長(zhǎng)度調(diào)控機(jī)制的系統(tǒng)解析
發(fā)布時(shí)間:2021-09-23 16:02
角果長(zhǎng)度是與油菜產(chǎn)量緊密相關(guān)的重要性狀。在油菜種質(zhì)資源中,角果長(zhǎng)度變現(xiàn)出很大的變異幅度,但其調(diào)控機(jī)制和基因基本上不清楚。為此,本研究利用油菜核心關(guān)聯(lián)群體及其中的角果長(zhǎng)度極端品系從遺傳、生理、細(xì)胞和分子(包括轉(zhuǎn)錄組測(cè)序和候選基因功能驗(yàn)證)水平進(jìn)行了系統(tǒng)的研究,以揭示油菜角果長(zhǎng)度的調(diào)控機(jī)制和基因。獲得的主要研究結(jié)果如下:(一)對(duì)23份角果長(zhǎng)度極端品系(12份為長(zhǎng)角果,11份為短角果)的角果發(fā)育動(dòng)態(tài)進(jìn)行了連續(xù)(開(kāi)花當(dāng)天至花后四周)觀察,結(jié)果表明:角果極長(zhǎng)和極短品系分別在花后12-15天和9-12天的生長(zhǎng)速率最快;兩者角果長(zhǎng)度的最終差異主要決定于花后的生長(zhǎng)速率和/或持續(xù)時(shí)間。據(jù)此,對(duì)影響角果發(fā)育的激素、光合速率和葉綠素含量等進(jìn)行了測(cè)定,其中角果的生長(zhǎng)素、乙烯含量以及葉片的光合速率在兩類材料之間存在顯著差異。(二)對(duì)23份角果長(zhǎng)度極端品系角果發(fā)育起始和長(zhǎng)度定型期進(jìn)行顯微觀察,結(jié)果表明:(1)開(kāi)花當(dāng)天,角果極長(zhǎng)和極短品系的子房長(zhǎng)度平均為7.2和6.0毫米,前者只是后者的1.2倍;而花后四周,角果極長(zhǎng)和極短品系的角果長(zhǎng)度平均為78.4和38.2毫米,前者達(dá)到了后者的2.1倍;(2)從開(kāi)花當(dāng)天到花后四...
【文章來(lái)源】:中國(guó)農(nóng)業(yè)科學(xué)院北京市
【文章頁(yè)數(shù)】:138 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
LIST OF ABBREVIATIONS
Chapter 1:General Introduction
1.1 Importance of rapeseed
1.2 Importance of silique length
1.3 QTL Mapping of silique length in Brassica
1.4 Gene cloning of silique length in Brassica
1.5 Regulatory pathways of silique length in Arabidopsis
1.5.1 Phytohormones
1.5.2 Transcription factors
1.5.3 Elongation factors
1.5.4 Micro RNA
1.5.5 Ubiquitin pathway
1.5.6 G-protein signaling
1.5.7 Receptor kinase signaling
1.5.8 Arabinogalactan proteins
1.5.9 RNA-binding proteins
1.5.10 Other proteins
1.6 The objective and significance of the current research
1.6.1 Objectives
1.6.2 Significance
Chapter 2:Physiological and cytological basis of silique length variation in extreme accessions
2.1 Materials and methods
2.1.1 Plant materials and field trials
2.1.2 Dynamic observation of the silique development
2.1.3 Quantification of phytohormones
2.1.4 Measurement of the photosynthetic rate of leaf
2.1.5 Measurement of the chlorophyll content of leaf
2.1.6 Microscopic observation of cell number and size in silique wall
2.1.7 Data analysis
2.2 Results
2.2.1 Dynamic observation of silique development for long-and short-silique lines
2.2.2 Silique length variation is associated with the level of endogenous phytohormones
2.2.3 Measurements of the photosynthetic rate of the leaf(Long vs Short silique lines)
2.2.4 Measurements of Chlorophyll content in the leaf(Long vs Short silique lines)
2.2.5 Microscopic observation of cell number and size in silique wall
2.2.6 Correlation of silique length with seed weight,seed number,and silique number
2.3 Discussion
Chapter 3:GWAS of silique length in rapeseed
3.1 Materials and methods
3.1.1 Plant materials and field trials
3.1.2 DNA extraction and SNP genotyping
3.1.3 Genome-wide association study
3.1.4 Statistical Analysis
3.1.5 Candidate genes and its expression analysis
3.2 Results
3.2.1 Phenotypic variation and heritability of silique length for the association population in ten environments
3.2.2 GWAS of silique length in ten environments
3.3 Discussion
Chapter 4:Comparative transcriptome analysis between long-and short-silique accessions
4.1 Materials and methods
4.1.1 Plant materials
4.1.2 RNA-seq experiment process
4.1.3 Reference genome comparison
4.1.4 Analysis of gene expression
4.1.5 Expression difference analysis
4.1.6 Cluster analysis of differential gene expression
4.1.7 Differential genes GO Classification Statistics and Enrichment Analysis
4.1.8 Visualization of differential gene KEGG pathway and enrichment analysis
4.1.9 Significant differentially expressed gene DEG screening
4.2 Results
4.2.1 Transcriptome sequencing and mapping
4.2.2 Correlation coefficient between samples
4.2.3 Gene expression analysis
4.2.4 Significant DEG screening
4.2.5 Differential gene expression pattern clustering
4.2.6 Differential gene GO Classification Statistics
4.2.7 Differential gene KEGG pathway enrichment analysis
4.2.8 Differentially expressed genes(DEGs)in the silique wall are highly associated with silique development
4.3 Discussion
Chapter 5:Candidate genes identification and functional verification
5.1 Materials and methods
5.1.1 Plant materials,strains,and vectors
5.1.2 Target selection
5.1.3 Binary vector construction
5.1.4 Identify positive clones and extract plasmids
5.1.5 Agrobacterium tumefaction's-mediated genetic transformation
5.1.6 Screening and identification of genetically modified plants from Arabidopsis thaliana
5.1.7 Observation and test of Arabidopsis gene-positive plants
5.1.8 Quantification of the expression of candidate genes
5.2 Results
5.2.1 Identification of candidate genes for silique length by the integrative analysis of GWAS and RNA-seq/functional prediction
5.2.2 Validation of Bna A9.ARF18 and Bna A9.CYP78A9 by candidate gene association analysis
5.2.3 Preliminary validation of other candidate gens by editing their orthologues in Arabidopsis using the CRISPR/Cas9 system
5.3 Discussion
Chapter 6:Conclusions
References
Appendices
Acknowledgement
Author's Biography
Personal Information
Academic Qualification
Recent Awards
List of Publications during the Ph.D.study
Abstract Publication
【參考文獻(xiàn)】:
期刊論文
[1]Rapeseed research and production in China[J]. Qiong Hu,Wei Hua,Yan Yin,Xuekun Zhang,Lijiang Liu,Jiaqin Shi,Yongguo Zhao,Lu Qin,Chang Chen,Hanzhong Wang. The Crop Journal. 2017(02)
[2]特大粒甘藍(lán)型油菜籽粒和角果發(fā)育形態(tài)特征[J]. 陳葦,李勁峰,張國(guó)建,羅延青,趙凱琴,周丕才,瞿觀,俎峰,董云松,王敬喬. 中國(guó)油料作物學(xué)報(bào). 2013(06)
本文編號(hào):3406003
【文章來(lái)源】:中國(guó)農(nóng)業(yè)科學(xué)院北京市
【文章頁(yè)數(shù)】:138 頁(yè)
【學(xué)位級(jí)別】:博士
【文章目錄】:
摘要
Abstract
LIST OF ABBREVIATIONS
Chapter 1:General Introduction
1.1 Importance of rapeseed
1.2 Importance of silique length
1.3 QTL Mapping of silique length in Brassica
1.4 Gene cloning of silique length in Brassica
1.5 Regulatory pathways of silique length in Arabidopsis
1.5.1 Phytohormones
1.5.2 Transcription factors
1.5.3 Elongation factors
1.5.4 Micro RNA
1.5.5 Ubiquitin pathway
1.5.6 G-protein signaling
1.5.7 Receptor kinase signaling
1.5.8 Arabinogalactan proteins
1.5.9 RNA-binding proteins
1.5.10 Other proteins
1.6 The objective and significance of the current research
1.6.1 Objectives
1.6.2 Significance
Chapter 2:Physiological and cytological basis of silique length variation in extreme accessions
2.1 Materials and methods
2.1.1 Plant materials and field trials
2.1.2 Dynamic observation of the silique development
2.1.3 Quantification of phytohormones
2.1.4 Measurement of the photosynthetic rate of leaf
2.1.5 Measurement of the chlorophyll content of leaf
2.1.6 Microscopic observation of cell number and size in silique wall
2.1.7 Data analysis
2.2 Results
2.2.1 Dynamic observation of silique development for long-and short-silique lines
2.2.2 Silique length variation is associated with the level of endogenous phytohormones
2.2.3 Measurements of the photosynthetic rate of the leaf(Long vs Short silique lines)
2.2.4 Measurements of Chlorophyll content in the leaf(Long vs Short silique lines)
2.2.5 Microscopic observation of cell number and size in silique wall
2.2.6 Correlation of silique length with seed weight,seed number,and silique number
2.3 Discussion
Chapter 3:GWAS of silique length in rapeseed
3.1 Materials and methods
3.1.1 Plant materials and field trials
3.1.2 DNA extraction and SNP genotyping
3.1.3 Genome-wide association study
3.1.4 Statistical Analysis
3.1.5 Candidate genes and its expression analysis
3.2 Results
3.2.1 Phenotypic variation and heritability of silique length for the association population in ten environments
3.2.2 GWAS of silique length in ten environments
3.3 Discussion
Chapter 4:Comparative transcriptome analysis between long-and short-silique accessions
4.1 Materials and methods
4.1.1 Plant materials
4.1.2 RNA-seq experiment process
4.1.3 Reference genome comparison
4.1.4 Analysis of gene expression
4.1.5 Expression difference analysis
4.1.6 Cluster analysis of differential gene expression
4.1.7 Differential genes GO Classification Statistics and Enrichment Analysis
4.1.8 Visualization of differential gene KEGG pathway and enrichment analysis
4.1.9 Significant differentially expressed gene DEG screening
4.2 Results
4.2.1 Transcriptome sequencing and mapping
4.2.2 Correlation coefficient between samples
4.2.3 Gene expression analysis
4.2.4 Significant DEG screening
4.2.5 Differential gene expression pattern clustering
4.2.6 Differential gene GO Classification Statistics
4.2.7 Differential gene KEGG pathway enrichment analysis
4.2.8 Differentially expressed genes(DEGs)in the silique wall are highly associated with silique development
4.3 Discussion
Chapter 5:Candidate genes identification and functional verification
5.1 Materials and methods
5.1.1 Plant materials,strains,and vectors
5.1.2 Target selection
5.1.3 Binary vector construction
5.1.4 Identify positive clones and extract plasmids
5.1.5 Agrobacterium tumefaction's-mediated genetic transformation
5.1.6 Screening and identification of genetically modified plants from Arabidopsis thaliana
5.1.7 Observation and test of Arabidopsis gene-positive plants
5.1.8 Quantification of the expression of candidate genes
5.2 Results
5.2.1 Identification of candidate genes for silique length by the integrative analysis of GWAS and RNA-seq/functional prediction
5.2.2 Validation of Bna A9.ARF18 and Bna A9.CYP78A9 by candidate gene association analysis
5.2.3 Preliminary validation of other candidate gens by editing their orthologues in Arabidopsis using the CRISPR/Cas9 system
5.3 Discussion
Chapter 6:Conclusions
References
Appendices
Acknowledgement
Author's Biography
Personal Information
Academic Qualification
Recent Awards
List of Publications during the Ph.D.study
Abstract Publication
【參考文獻(xiàn)】:
期刊論文
[1]Rapeseed research and production in China[J]. Qiong Hu,Wei Hua,Yan Yin,Xuekun Zhang,Lijiang Liu,Jiaqin Shi,Yongguo Zhao,Lu Qin,Chang Chen,Hanzhong Wang. The Crop Journal. 2017(02)
[2]特大粒甘藍(lán)型油菜籽粒和角果發(fā)育形態(tài)特征[J]. 陳葦,李勁峰,張國(guó)建,羅延青,趙凱琴,周丕才,瞿觀,俎峰,董云松,王敬喬. 中國(guó)油料作物學(xué)報(bào). 2013(06)
本文編號(hào):3406003
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/3406003.html
最近更新
教材專著