天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

關(guān)中地區(qū)冬小麥水分產(chǎn)量效應(yīng)及氣候變化條件下產(chǎn)量響應(yīng)模擬研究

發(fā)布時(shí)間:2018-03-14 18:17

  本文選題:CSM-CERES-Wheat模型 切入點(diǎn):冬小麥 出處:《西北農(nóng)林科技大學(xué)》2016年博士論文 論文類型:學(xué)位論文


【摘要】:水分虧缺對冬小麥的生長發(fā)育有著重要作用,不合理的灌溉制度既會(huì)對冬小麥的生長產(chǎn)生不利影響,還會(huì)造成水資源的浪費(fèi)。隨著未來氣候的變化,水資源狀況也會(huì)隨之發(fā)生變化,且會(huì)對冬小麥的生長產(chǎn)生一定的影響。因此,本研究以2011—2012和2012—2013年遮雨棚下3個(gè)水分處理(充分灌溉,100%ET;輕度水分虧缺,80%ET;重度水分虧缺,60%ET)以及大田試驗(yàn)3個(gè)水分處理(同上)和3個(gè)種植密度處理(密播340 kg hm-2;適宜播種,240 kg hm-2;稀播,140 kg hm-2)的冬小麥小區(qū)試驗(yàn)為基礎(chǔ),分析了不同水分或不同水分及密度條件下冬小麥的需水規(guī)律。同時(shí),利用試驗(yàn)數(shù)據(jù)校驗(yàn)了CSM(Cropping System Model)-CERES-Wheat作物模型,對關(guān)中地區(qū)冬小麥進(jìn)行播期優(yōu)化。選取國際耦合模式比較計(jì)劃第五階段(CMIP5)中5種全球氣候模式(GCMs,Global Climate Models)在不同典型濃度路徑(RCPs)情景下對關(guān)中地區(qū)2020—2100年氣候變化情況進(jìn)行預(yù)測,并用CERES-Wheat模型模擬基于不同氣候變化情景模式下冬小麥的響應(yīng)情況。本研究得出主要結(jié)論如下:(1)分析不同水分脅迫處理對冬小麥生長和產(chǎn)量的影響,表明拔節(jié)期是冬小麥對水分最敏感的生育時(shí)期,其次是開花期,在這一階段實(shí)施水分脅迫會(huì)導(dǎo)致冬小麥地上生物量、產(chǎn)量及水分利用效率降低。分蘗期的水分脅迫不會(huì)對產(chǎn)量造成嚴(yán)重影響。對于無遮雨設(shè)施的大田試驗(yàn),密播和輕度水分虧缺的灌溉管理措施可以獲得最大產(chǎn)量及較高的水分利用效率。(2)應(yīng)用大田試驗(yàn)數(shù)據(jù)表明了CSM-CERES-Wheat模型在關(guān)中地區(qū)的適用性,CERES-Wheat模型可以較好模擬關(guān)中地區(qū)冬小麥的物候期、成熟期地上生物量、產(chǎn)量,其模擬值與實(shí)測值的歸一化均方根誤差(RMSEn)分別為小于2%、15.4%和14.8%。對葉面積指數(shù)的模擬結(jié)果一般,而對冬小麥生育期內(nèi)累積生物量的模擬結(jié)果略差,尤其是對葉片累積生物量的模擬誤差較大,模擬值與實(shí)測值的RMSEn達(dá)到70%。應(yīng)用模型中的季節(jié)性分析模塊,利用30年的歷史氣象數(shù)據(jù)(1984—2013)對不同水分和種植密度情景的冬小麥在7個(gè)不同播種日期下的產(chǎn)量進(jìn)行模擬。結(jié)果表明,播種日期從9月7日推移到10月27日,雨養(yǎng)情景下的作物產(chǎn)量平均減少36.7%。通過季節(jié)性分析的模擬結(jié)果與關(guān)中地區(qū)的播種模式結(jié)合分析,得到該地區(qū)的最佳播種日期為10月7日左右,具體播種情況可根據(jù)當(dāng)年的農(nóng)藝措施及氣候條件進(jìn)行微調(diào)整。(3)應(yīng)用遮雨棚下冬小麥試驗(yàn)數(shù)據(jù),利用CSM-CERES-Wheat模型中PriestleyTaylor(PT)和FAO-56 Penman Monteith(PM)兩種估算作物蒸發(fā)蒸騰量的方法模擬了冬小麥2011—2012和2012—2013兩個(gè)生長季的累積蒸發(fā)蒸騰量、日蒸發(fā)蒸騰量、土壤含水率、成熟期地上生物量以及產(chǎn)量,并進(jìn)行了評價(jià)和比較。將基于兩種方法模擬的蒸發(fā)蒸騰量值與試驗(yàn)區(qū)域內(nèi)大型稱重式蒸滲儀的實(shí)測結(jié)果進(jìn)行比較,結(jié)果表明,基于PT和FAO-56 PM方法的CERES-Wheat模型均可以較準(zhǔn)確地模擬冬小麥的蒸發(fā)蒸騰量,累積蒸發(fā)蒸騰量和日蒸發(fā)蒸騰量的誤差分別小于5.4%和3.4%。同時(shí),模型還可以模擬土壤水分動(dòng)態(tài),在0~20 cm土層,CERES-Wheat模型的模擬值與實(shí)測值的RMSEn為39.38%,模擬結(jié)果較差,但是從20 cm開始,基于兩種方法的模擬值與實(shí)測值的RMSEn均小于23.1%,且對40-60 cm土層的模擬結(jié)果最好。另外,CSM-CERES Wheat模型基于PT方法模擬的蒸發(fā)蒸騰量值小于基于FAO-56 PM方法的模擬結(jié)果,而基于前者對土壤含水率的模擬值要高于基于后者的模擬結(jié)果。CERES-Wheat模型對冬小麥兩個(gè)生長季開花期和成熟期的模擬精度高,其模擬值和實(shí)測值的RMSEn分別為0.85%和0.58%。CERES-Wheat模型基于PT和FAO-56 PM兩種方法對冬小麥在2011—2012和2012—2013生長季地上生物量的模擬值與實(shí)測值的RMSEn分別為13.57%和22.76%,產(chǎn)量的RMSEn分別為11.80%和15.42%,模擬結(jié)果均較好;赑T方法對地上生物量以及產(chǎn)量的模擬結(jié)果要高于FAO-56 PM方法,模型用兩種方法模擬的成熟期地上生物量及產(chǎn)量的RMSEn值均在25%以內(nèi)。(4)關(guān)中地區(qū)未來氣候變暖趨勢明顯,在不同的GCMs和典型濃度路徑情景模式下,最高溫度和最低溫度均呈上升趨勢,渭南地區(qū)HADCM3模型和RCP8.5典型濃度路徑情景模式下,2100年一月的最低氣溫增長幅度為16oC。在不同的月份降雨量變化不同,一般情況為2月、6月和12月降雨量呈增多趨勢,4月、9月和10月降雨量呈減少趨勢。寶雞和渭南地區(qū)太陽輻射變化呈增大趨勢,而武功地區(qū)太陽輻射降低幅度較大。在僅改變未來氣候變化的條件下,寶雞和武功地區(qū)冬小麥成熟期較基準(zhǔn)時(shí)段縮短3~35天,而渭南地區(qū)成熟期較基準(zhǔn)時(shí)段增長17~52天。寶雞、武功及渭南地區(qū)在不同情景模式下預(yù)測到21世紀(jì)末期冬小麥主要呈增產(chǎn)趨勢。
[Abstract]:Play an important role in the growth of water deficit on winter wheat, unreasonable irrigation system can produce adverse effects on winter wheat growth, but also cause the waste of water resources. With climate change, water resources will be changed, and will have a certain effect on winter wheat growth therefore. In this study, 2011 - 2012 and 2012 2013 3 under the canopy water treatment (full irrigation, mild water deficit, 100%ET; 80%ET; severe water deficit, 60%ET) and the field test of 3 water treatment (ibid) and 3 planting density treatment (340 kg hm-2 dense sowing sowing, 240; kg hm-2; kg hm-2) 140 sowing winter wheat experiment as the foundation, analyzes the water requirement of different water or different moisture and density conditions of winter wheat. At the same time, by using the test data verified CSM (Cropping System Model) -CERES-Wheat crop model And for sowing date of Winter Wheat in Guanzhong area. The optimization selection of international coupled model intercomparison project (CMIP5) in the fifth stage of the 5 global climate models (GCMs, Global Climate Models) in different concentration path (RCPs) scenarios of climate change in Guanzhong area from 2020 to 2100 were predicted, and the CERES-Wheat model was used to simulate the response situation of Winter Wheat under different climate change scenarios based on the model. The main results are as follows: (1) analysis of the different effects of water stress on the growth and yield of winter wheat at jointing stage of winter wheat, that is the most sensitive to water bearing period, followed by the flowering period, the implementation of water stress in winter wheat on the ground at this stage the biomass, yield and water use efficiency decreased. At tillering stage, water stress does not cause serious influence on production. For field test without shelter facilities, dense sowing and mild water Deficit irrigation management measures can achieve the maximum yield and high water use efficiency. (2) by field test data show that the applicability of CSM-CERES-Wheat model in Guanzhong area, CERES-Wheat model can better simulate the phenological period of Winter Wheat in Guanzhong area, mature ground biomass, yield, and the measured values of the normalized root mean square error the simulated values (RMSEn) were less than 2%, 15.4% and 14.8%. simulation of leaf area index results in general, and the simulation results of winter wheat biomass accumulation is slightly worse, especially the simulation error of biomass accumulation of leaf is larger, the simulated and measured values of RMSEn reached a seasonal 70%. model the analysis module, using historical meteorological data for 30 years (1984 - 2013) on Yield in 7 different sowing date of Winter Wheat under different water and planting density scenarios is simulated. Results 鏄,

本文編號:1612375

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1612375.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶299c7***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com