浙江長(zhǎng)興煤山盆地土壤重金屬來(lái)源解析及結(jié)果可靠性分析研究
本文關(guān)鍵詞: 土壤重金屬 源識(shí)別 源解析 受體模型 正定矩陣因子分解模型(PMF) 鉛穩(wěn)定同位素 出處:《浙江大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:土壤是環(huán)境的重要組成部分,也是人類賴以生存的自然環(huán)境和農(nóng)業(yè)生產(chǎn)的重要資源。然而,在過(guò)去很長(zhǎng)一段時(shí)間內(nèi),由于不合理的社會(huì)、經(jīng)濟(jì)發(fā)展,使許多有毒有害物質(zhì)(如重金屬)進(jìn)入到土壤系統(tǒng),對(duì)農(nóng)作物生長(zhǎng)和品質(zhì)安全均產(chǎn)生了一定的負(fù)面影響,進(jìn)而通過(guò)食物鏈的富集作用,對(duì)人體健康和安全構(gòu)成了非常嚴(yán)重的潛在威脅。定性識(shí)別源類并量化各源類對(duì)于土壤重金屬的貢獻(xiàn),是土壤重金屬污染防治的前提。本文以浙江省長(zhǎng)興縣西北部的煤山盆地農(nóng)田土壤為主要研究對(duì)象,通過(guò)采集表層土壤樣品,全面摸清當(dāng)?shù)赝寥乐械闹亟饘傥廴咎卣骱头植?并通過(guò)主成分分析、空間分析等手段,定性識(shí)別出區(qū)域內(nèi)的主要污染源類。在此基礎(chǔ)上,通過(guò)對(duì)潛在源類周圍土壤剖面的對(duì)比分析,證實(shí)潛在污染源類對(duì)于周圍土壤的污染;并使用鉛穩(wěn)定同位素技術(shù)對(duì)部分鉛來(lái)源較為復(fù)雜的樣點(diǎn)進(jìn)行鉛來(lái)源解析。最后,嘗試使用正定矩陣因子分解(POsitive Matrix Factorization,PMF)模型確定因子的貢獻(xiàn)及其成分譜,并結(jié)合剖面分析等對(duì)PMF結(jié)果的可靠性進(jìn)行驗(yàn)證。主要結(jié)果如下:(1)煤山盆地表層(0-20cm)土壤鎘(Cd)污染突出,平均濃度為0.43 mg kg-1,與國(guó)家土壤環(huán)境質(zhì)量二級(jí)標(biāo)準(zhǔn)相比,點(diǎn)位超標(biāo)率達(dá)30.71%。使用有限混合分布模型對(duì)表層土壤Cd濃度數(shù)據(jù)進(jìn)行分析,確定當(dāng)?shù)氐腃d污染閾值為0.231 mgkg-1。鉛(Pb)、銅(Cu)、鋅(Zn)在研究區(qū)域內(nèi)污染并不嚴(yán)重,平均濃度分別為39.93 mg kg-1、17.25 mg kg-1和63.42 mg kg-1,均未超過(guò)國(guó)家土壤環(huán)境質(zhì)量二級(jí)標(biāo)準(zhǔn)。(2)空間分析結(jié)果表明,Cd在千井灣地區(qū)和盆地東北部出現(xiàn)2處高值區(qū),Pb在煤山盆地東北部的煤山工業(yè)區(qū)出現(xiàn)高值區(qū)。Cu和Zn的空間分布規(guī)律類似,兩者的高值區(qū)與盆地內(nèi)煤礦礦井的位置基本吻合。土壤pH在盆地中部有一條東西向的高值帶,其空間分布規(guī)律與土壤Ca的空間分布特征相類似,并且,兩者的高值區(qū)在水泥廠、采石場(chǎng)附近。使用主成分分析(Principal Component Analysis,PCA)共提取4個(gè)主成分,分別解譯為鉛蓄電池廠、建筑材料行業(yè)相關(guān)活動(dòng)、煤礦開(kāi)采相關(guān)活動(dòng)這3類潛在人為活動(dòng)源以及土壤母質(zhì)這一自然源。分布在以上3類潛在人為源周圍的大部分土壤樣品均被有限混合分布模型分為受到Cd污染類。(3)在潛在污染源類附近采集的土壤剖面中,表層土壤(0-20cm)的Cd、Pb、Cu、Zn和Ca的濃度相對(duì)較高。其中Cd和Pb的最大濃度出現(xiàn)在鉛蓄電池廠附近、Ca的最大濃度出現(xiàn)在灰?guī)r礦區(qū)。剖面富集因子進(jìn)一步證實(shí)了元素的表聚現(xiàn)象。各元素在不同土壤類型的自然剖面中,以及不同土壤類型的40cm以下土層中,含量相差較大。通過(guò)比較剖面表層中各元素的人為來(lái)源濃度,本研究確認(rèn)研究區(qū)域內(nèi)鉛蓄電池廠的主要污染元素為Cd和Pb,水泥廠是Ca和Cd,煤礦開(kāi)采活動(dòng)則是Cd、Cu、Pb和Zn,石灰石開(kāi)采僅為Ca,結(jié)果與PCA解析結(jié)果基本吻合。(4)在使用鉛穩(wěn)定同位素進(jìn)行源解析時(shí),建議使用豐度值來(lái)表示鉛穩(wěn)定同位素的組成。由于地殼樣品中的204Pb含量很低,且變異程度小,所有地殼樣品的鉛穩(wěn)定同位素組成近似落在一個(gè)平面上,可以在二維平面上展示樣品的鉛穩(wěn)定同位素。使用豐度來(lái)表示鉛穩(wěn)定同位素的組成,消除了原來(lái)使用同位素比值表示組成時(shí)的不一致性問(wèn)題,使得解析結(jié)果更加準(zhǔn)確。通過(guò)對(duì)煤山盆地內(nèi)部分土壤樣品的鉛穩(wěn)定同位素分析表明,土壤背景值是土壤樣品中鉛的主要來(lái)源之一。(5)由于受到數(shù)據(jù)離群值值等影響,PMF模型無(wú)法對(duì)完整數(shù)據(jù)集得到合理的結(jié)果。而剔除部分?jǐn)?shù)據(jù)點(diǎn)之后,PMF模型解析出的剖面表層土壤樣品的各元素的土壤母質(zhì)源的貢獻(xiàn)大多小于剖面40 cm以下土層中的濃度,即PMF模型低估了土壤母質(zhì)源的貢獻(xiàn)。其主要原因可能是由于研究區(qū)域內(nèi)的各種源類的成分譜在空間上并不穩(wěn)定,呈現(xiàn)明顯的異質(zhì)性。使用剖面40 cm以下土層中的元素含量近似表征當(dāng)?shù)赝寥滥纲|(zhì)的元素含量,各元素的自然含量變異較大,無(wú)法使用單一因子進(jìn)行表征,需要至少4個(gè)因子才能較好地?cái)M合剖面40 cm以下土壤元素濃度。水泥廠等人為活動(dòng)源的成分譜在研究區(qū)域內(nèi)不同空間位置也存在明顯差異,無(wú)法使用單一因子來(lái)表征。
[Abstract]:Soil is an important part of the environment, but also an important resource for human survival of the natural environment and agricultural production. However, in the past for a long period of time, because of the unreasonable social and economic development, many toxic and harmful substances (such as heavy metals) into the soil system, which has a certain negative impact on the growth of crop quality and safety, and then through the enrichment of the food chain, constitutes a very serious potential threat on human health and safety. The qualitative identification of the source of all sources and quantify the contribution to soil heavy metals, is the premise of soil heavy metal pollution prevention. In Zhejiang province in northwestern Changxing County Meishan basin for farmland soil the main object of study, the soil samples were collected, in order to find out the local characteristics of heavy metal pollution in soil and distribution, and through principal component analysis, spatial analysis methods, qualitative Identify the main sources of pollution in the region. On this basis, through the comparison of potential sources around the soil profile analysis, confirmed the potential source of contamination to the surrounding soil pollution; sampling points and use of stable lead isotope technology on the part of the lead more complex sources lead to source apportionment. Finally, try to use the positive definite matrix factorization (POsitive Matrix Factorization, PMF) model to determine the contribution and component spectrum, combined with the profile analysis are adopted to verify the reliability of PMF results. The main results are as follows: (1) Meishan basin surface (0-20cm) soil cadmium (Cd) pollution, the average concentration of 0.43 mg kg-1, compared with the two level standard the national soil environment quality, point to exceed the standard rate of 30.71%. using the finite mixture distribution model of surface soil Cd concentration data were analyzed to determine the threshold of Cd pollution in the local area is 0.231 mgkg-1. Pb (Pb), copper (Cu), zinc ( Zn) in the study area are not seriously polluted, the average concentration was 39.93 mg and 63.42 kg-1,17.25 mg kg-1 mg kg-1, no more than two national soil environmental quality standards. (2) the results of spatial analysis showed that Cd in the northeast of 1000 wells Bay area and basin 2 high value area, high Pb value.Cu and Zn are similar in the spatial distribution of northeast Meishan basin mountain industrial zone, the high value area and Basin coal mine position basically. Soil pH has an east-west high value zone in the middle of the basin, the spatial distribution of soil Ca and the spatial distribution characteristics are similar. Also, the high value area in the cement factory of the two quarries nearby. Using principal component analysis (Principal Component, Analysis, PCA) were extracted from 4 principal components, respectively interpreted as a lead battery plant, building materials industry, coal mining activities related to these 3 types of potential Anthropogenic and natural sources of the soil. Most soil samples around the distribution in the above 3 types of potential anthropogenic sources were divided into finite mixture distribution model polluted by Cd. (3) a potential source of contamination in the soil profile type collected near surface soil (0-20cm), Cd, Pb, Cu. The concentration of Zn and Ca is relatively high. The maximum concentration of Cd and Pb in the vicinity of the lead storage battery factory, the maximum concentrations of Ca in limestone mining area. The enrichment factor profile further confirmed the element accumulation in surface elements in different soil types. The natural profile, and different types of soil below 40cm soil layer the content, the difference is great. The concentration of various elements from anthropogenic sources in the surface profile comparison, this study confirmed that the main pollution elements in the study area lead battery factory for Cd and Pb, Ca and Cd cement plant, coal mining activities are Cd, Cu, Pb and Zn, Limestone mining is only Ca and the results agree with the analytical results. (4) PCA source apportionment in the use of lead isotope abundance, suggest the use of value to indicate the composition of lead isotope. The content of 204Pb in the sample of the crust is very low, and the degree of variation is small, stable lead isotope composition of all samples fall near the crust in a plane, can show stable lead isotope samples in the two-dimensional plane. Using the composition of stable lead isotope abundance said, eliminating the original use of isotope ratios indicated the inconsistency of the composition, make the analytical results more accurate. The lead isotope of Meishan basin in the soil sample analysis showed that the background value of soil is one of the main sources of lead in soil samples. (5) due to the data outlier value, PMF model is unable to complete the data set and get reasonable results. After deleting some data points, the concentration of soil parent material source elements profile analysis of PMF model the surface of the soil sample's contribution is mostly less than 40 cm soil profile in the PMF model underestimates the contribution of soil source. The main cause is that within the study area of various source component spectrum is not stable in space, shows significant heterogeneity. The element contents in soil profile below 40 cm using the approximate representation of local soil, the content of elements of natural variation, unable to use the single factor characterization, need at least 4 factors can better fit the profile of 40 cm below the soil element concentration in cement plant. Human activities such as source component spectrum of different spatial locations in the study area there are also obvious differences, can not be used to characterize the single factor.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:X53;S153
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋玉芝;土壤鉛污染對(duì)水稻生長(zhǎng)影響的研究[J];南京氣象學(xué)院學(xué)報(bào);2005年04期
2 任秀娟,陳翠玲,曹麗華,聞劉偉,劉合滿;107國(guó)道(新鄉(xiāng)段)兩側(cè)土壤鉛含量調(diào)查[J];河南科技學(xué)院學(xué)報(bào)(自然科學(xué)版);2005年02期
3 趙美微;塔莉;;公路兩側(cè)農(nóng)田土壤鉛污染危害及其對(duì)策研究[J];今日科苑;2008年24期
4 竇爭(zhēng)霞;土壤鉛污染及其對(duì)植物的影響[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);1988年03期
5 陳維新,張玉龍,陳中赫,李軍;沈陽(yáng)東郊沈撫公路兩側(cè)土壤鉛含量分布規(guī)律的初步研究[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);1990年02期
6 柴志斌;;土壤鉛污染[J];農(nóng)業(yè)環(huán)境與發(fā)展;1990年03期
7 陳建安,林健,蘭天水,張小平,邱卿如,張志超,杜恣閑,陳益林,張琦,湯小羚;山區(qū)公路邊土壤鉛污染水平及其分布規(guī)律研究[J];海峽預(yù)防醫(yī)學(xué)雜志;2001年02期
8 王艷,王金達(dá),張學(xué)林,劉汝海,李仲根;沈陽(yáng)市城鄉(xiāng)結(jié)合部土壤鉛的空間分異特征分析[J];中國(guó)科學(xué)院研究生院學(xué)報(bào);2004年01期
9 任慧敏,王金達(dá),張學(xué)林;沈陽(yáng)市土壤鉛的空間分布及風(fēng)險(xiǎn)評(píng)價(jià)研究[J];地球科學(xué)進(jìn)展;2004年S1期
10 李波,林玉鎖;公路兩側(cè)農(nóng)田土壤鉛污染及對(duì)農(nóng)產(chǎn)品質(zhì)量安全的影響[J];環(huán)境監(jiān)測(cè)管理與技術(shù);2005年01期
相關(guān)會(huì)議論文 前7條
1 趙世君;楊柳;郭偉;李旭祥;;土壤鉛污染溯源方法研究[A];Proceedings of Conference on Environmental Pollution and Public Health(CEPPH 2012)[C];2012年
2 于凱;楊柳;鄭劉孫;李旭祥;;基于鉛同位素表征鉛鋅冶煉廠周邊土壤鉛源[A];2013中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第四卷)[C];2013年
3 孫永娥;程勝高;任來(lái)君;;植物修復(fù)土壤鉛污染的影響因素研究[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第12屆學(xué)術(shù)年會(huì)論文集[C];2009年
4 胡向陽(yáng);程相博;;基于GIS的某地電池廠周圍土壤鉛污染現(xiàn)狀空間分析[A];2013中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第五卷)[C];2013年
5 張?jiān)T?劉雯君;鄭丹;陳建偉;周宜開(kāi);;土壤鉛污染地區(qū)人群生物材料鉛含量比較分析[A];第二屆泰山微量元素高級(jí)論壇匯編[C];2008年
6 王爍;;淺談土壤中鉛污染的防治[A];2011中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第二卷)[C];2011年
7 王爍;;淺談土壤中鉛污染的防治[A];2012中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第四卷)[C];2012年
相關(guān)重要報(bào)紙文章 前1條
1 張 蕾;滬寧高速沿線土壤受污染嚴(yán)重[N];中國(guó)商報(bào);2005年
相關(guān)博士學(xué)位論文 前3條
1 支裕優(yōu);浙江長(zhǎng)興煤山盆地土壤重金屬來(lái)源解析及結(jié)果可靠性分析研究[D];浙江大學(xué);2017年
2 蘇小娟;有機(jī)酸和含磷物質(zhì)對(duì)土壤鉛的固定效果及其機(jī)理[D];華中農(nóng)業(yè)大學(xué);2015年
3 王海娟;西南含砷金礦區(qū)砷富集植物篩選及其除砷應(yīng)用研究[D];昆明理工大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 宋玉芝;土壤鉛污染對(duì)我國(guó)主要農(nóng)作物影響的研究[D];南京氣象學(xué)院;2003年
2 朱曉婷;福建安溪茶園土壤鉛粒級(jí)分布及有效性特征[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
3 高飛霞;我國(guó)部分城市市區(qū)表層土壤和路面塵土鉛含量綜合評(píng)價(jià)[D];河北醫(yī)科大學(xué);2015年
4 王昌宇;湖南典型地區(qū)土壤中鉛等元素污染來(lái)源探討[D];中國(guó)地質(zhì)大學(xué)(北京);2016年
5 黃潔瓊;浙中丘陵地區(qū)燃煤電廠周邊土壤重金屬污染特征研究[D];浙江大學(xué);2017年
6 蘇利榮;酸性土壤鉛污染的改良研究[D];廣西大學(xué);2005年
7 武倩倩;塊根、塊莖類植物修復(fù)土壤鉛、鎘污染的試驗(yàn)研究[D];中國(guó)礦業(yè)大學(xué);2014年
8 李海光;污染場(chǎng)地周邊農(nóng)田土壤重金屬含量的空間變異特征及其污染源識(shí)別研究[D];浙江大學(xué);2012年
9 趙健;高速公路沿線農(nóng)田土壤和水稻重金屬含量的空間分布特征及其影響因素分析[D];南京農(nóng)業(yè)大學(xué);2009年
10 李波;江蘇省主要公路兩側(cè)農(nóng)田土壤及農(nóng)產(chǎn)品重金屬污染狀況研究[D];南京農(nóng)業(yè)大學(xué);2005年
,本文編號(hào):1514899
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1514899.html