天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

低磷脅迫下玉米突變體Qi319-96高光效機制的解析及轉基因耐鹽耐旱棉花新種質的創(chuàng)制

發(fā)布時間:2018-01-05 07:12

  本文關鍵詞:低磷脅迫下玉米突變體Qi319-96高光效機制的解析及轉基因耐鹽耐旱棉花新種質的創(chuàng)制 出處:《山東大學》2017年博士論文 論文類型:學位論文


  更多相關文章: 玉米 低磷 光合作用 葉綠素熒光 蛋白質組 棉花 耐鹽 耐旱 轉基因 TsVP AtNHX1 ZmPLC1


【摘要】:一、低磷脅迫下玉米突變體Qi319-96高光效機制的解析作物光合效率的提升與作物產(chǎn)量的提高密切相關,了解植物磷效率與光合作用的關系是農(nóng)業(yè)可持續(xù)發(fā)展的重要課題。在玉米突變體篩選中發(fā)現(xiàn)耐低磷突變體Qi319-96與其來源親本Qi319相比在低磷脅迫下具有更高的光合效率。本工作在無機磷酸鹽充足(+Pi,1000μMKH2P04)和缺乏(-P,5μMKH2P04)條件下培養(yǎng)玉米Qi319-96和Qi319植株,以玉米葉片為材料進行了比較蛋白質組學、基因組學和生理學研究,試圖探討低磷脅迫下Qi319-96高光合效率的分子機制。突變體Qi319-96耐低磷能力的提高與其改善細胞內部Pi的利用效率有關低磷水平限制了植物生長和新陳代謝。在低磷條件下,Qi319和Qi319-96冠部的總磷含量沒有顯著差異,但Qi319-96的Pi含量比Qi319高52.94%;Qi319-96具有更高的葉綠素含量和光合能力;Qi319和Qi319-96葉片的淀粉和蔗糖含量也不同,Qi319-96葉片比Qi319含有更多的蔗糖。Pi饑餓下,Qi319-96可以更好地調整膜脂質組成,有更高的V-ATPase活性水平,增強了細胞內Pi的循環(huán)再利用;葉綠素生物合成得到改善,Qi319-96中幾種卡爾文循環(huán)和"C02泵"關鍵酶的活性水平也顯著高于Qi319,這導致低磷脅迫下Qi319-96中的光合作用性能優(yōu)于Qi319。Qi319-96對低磷脅迫耐受性的提高是由于其改善了細胞內部Pi的利用效率,耐低磷玉米新種質可以利用細胞工程手段有效獲得。miR395和miR399參與了玉米突變體Qi319-96葉片的Pi水平調控MicroRNA(miRNA)參與了調節(jié)植物的生長發(fā)育和抗逆反應等多種生理過程。在+P和-P條件下利用測序技術比較了 Qi319和Qi319-96葉片中miRNA的表達水平。在+P下發(fā)現(xiàn)有10個已知miRNA家族的23個成員和40個新miRNA呈現(xiàn)差異表達。在-P下有8個玉米已知miRNA家族的34個成員和23個新miRNA在Qi319和Qi319-96間表現(xiàn)出不同表達水平。-P下一些靶基因的表達水平在Qi319和Qi319-96間顯著不同,miR395和miR399在玉米突變體Qi319-96葉片的Pi水平調控中扮演著重要角色。Qi319-96在低磷脅迫下有更好的光系統(tǒng)性能和碳固定系統(tǒng)性能磷饑餓降低了玉米葉片的Pn和Gs,但Ci增加,非氣孔因素導致了 Pn的下調。低磷下 Fv/Fm、ΦPsⅡ、RC/CS、ABS/CS、ETo/Cs、TRo/CS、Ψo、△Ir/Io、ΦPSⅠ/PSⅡ)和RuBPcase羧化酶羧化活性下調,而DIo/CS、Vj、Vi增加,表明磷饑餓對整個電子傳遞鏈造成了傷害,降低了光系統(tǒng)的電子傳遞能力,吸收光能的熱耗散增加,ATP含量降低,碳同化速率下調。不同基因型比較,Qi319-96具有更好的Ψo、△Ir/Io、Φ(PSⅠ/PSⅡ)和RuBPcase羧化酶羧化活性,低磷脅迫下Qi319-96與Qi319相比具有更高的ATP水平和二氧化碳同化能力。葉綠體高豐度差異表達蛋白在Qi319-96低磷耐受性的貢獻在于促進光系統(tǒng)的穩(wěn)定性、協(xié)調性和高效性葉綠體作為光合作用的位點,與植物生長和非生物逆境響應密切相關。對Qi319-96和Qi319的葉綠體蛋白質組進行了比較分析,試圖了解Qi319-96具有更好碳同化能力的原因。在低磷脅迫下二維凝膠電泳圖中,與Qi319相比Qi319-96顯著上調的差異表達蛋白為27個,其中24個得到質譜鑒定。這些鑒定的蛋白可分為四類:第一類是光合作用參與蛋白,包括RuBisCO、ATP合酶CF1-β亞基、ATP合酶CF1-α亞基、PSⅡ放氧增強蛋白;第二類是參與光合作用系統(tǒng)穩(wěn)定的蛋白,包括PSⅡ穩(wěn)定性/裝配因子HCF136、FtsH蛋白、葉綠素a/b結合蛋白;第三類是電子傳遞鏈相關蛋白,包括Cytb6/f復合體鐵硫亞基、玉米葉鐵氧還蛋白NADP+還原酶;第四類為其他蛋白,包括肽-脯酰順反異構酶、病程相關蛋白等。這些蛋白在Qi319-96的葉綠體中高豐度高累積起到了促進光系統(tǒng)的穩(wěn)定性、協(xié)調性和高效性的作用,在磷饑餓下Qi319-96具有更好的電子傳遞性能和碳同化能力。以上工作初步揭示了 Qi319-96低磷下高光效的機制,即低磷耐受性的增加是由于細胞內Pi利用效率的提高,低磷脅迫下Qi319-96的光合作用系統(tǒng)具有更好的光系統(tǒng)性能和羧化系統(tǒng)性能。本工作為了解玉米光合作用系統(tǒng)應對低磷脅迫的機制提供了新信息,有望為高光效玉米改良提供新的策略。二、轉基因耐鹽耐旱棉花新種質的創(chuàng)制干旱、高鹽度嚴重制約棉花的生產(chǎn)和影響纖維質量。生產(chǎn)上迫切需要培育耐鹽耐旱棉花品種,以在水分脅迫和/或高鹽分條件下維持棉花的生產(chǎn)能力,實現(xiàn)棉花穩(wěn)產(chǎn)和纖維品質的穩(wěn)定。在這部分工作中,將來自鹽芥的TsVP基因(編碼H+-PPase)、來自擬南芥的AtNHX1基因(編碼Na+/H+ Antiporter)和來自玉米的ZmPLC1基因(編碼PI-PLC)分別導入棉花,采用室內選擇結合大田測試的方法,對轉TsVP、轉TsVP-AtNHX1、轉ZmPLC1基因棉花的耐鹽性或抗旱性進行了室內和大田測試,選育了耐鹽耐旱性提高的轉TsVP、轉TsVP-AtNHX1、轉ZmPLC1基因棉花,培育出一批棉花耐鹽抗旱新材料。鹽脅迫下TsVP基因的表達提高了轉基因棉花的出苗率和在鹽堿地中的產(chǎn)量棉花出苗和成苗是鹽漬地植棉的關鍵,鹽漬地中棉花的籽棉產(chǎn)量也為人們所關注。對表達TsVP基因和受體(野生型)棉花在鹽堿地中的出苗時間、出苗率、成苗率、蕾期葉片碳同化能力、籽棉產(chǎn)量和棉纖維品質等進行測定,以評價選育出的表達TsVP基因的棉花育種材料的應用價值。結果表明在鹽堿地中表達TsVP基因棉花的出苗時間與野生型相比可提前2d,且具有更高的出苗率和成苗率。在2013年的大田試驗中,表達TsVP的棉花的CO2同化速率顯著高于受體LM1138。表達TsVP基因的株系TP1、TP2和TP3的凈光合速率分別高于受體30.75%、45.72%和50.61%,PSⅡ實際光化學效率(ΦPSⅡ)也分別高于野生型25.00%、42.50%和45.00%,表達TsVP的棉花具有比受體LM1138更好的碳同化能力和光合電子傳遞效率。過表達TsPT基因的棉花籽棉產(chǎn)量比野生型平均提高14.81%,與野生型相比棉纖維的品質也有所提高。溫室內育種盤的種子出苗試驗結果表明,當NaCl濃度大于100mM時,轉基因株系50%種子出苗所需的時間顯著少于受體LM1138。因此,我們的工作表明轉TsVP基因棉花可用于提高鹽漬地中棉花的經(jīng)濟產(chǎn)量和改善棉纖維質量。轉AtNHX1-TsVP雙基因提高了棉花的耐鹽性和鹽堿地中的籽棉產(chǎn)量為了提高棉花的高鹽耐受能力,在春棉GK35中共表達了AtNHX1和TsVP基因。無論在溫室鹽脅迫下還是在東營鹽堿地中,棉花葉片的相對含水量下降,但表達AtNHX1-TsVP的株系AT3比WT具有更高的相對水含量,表達TsVP-AtNHX1基因增強了棉花細胞的保水能力。在溫室鹽脅迫下或者在鹽堿地中轉基因株系AT3葉片中陽離子總摩爾數(shù)分別比WT提高35.79%和23.87%,葉片飽和滲透勢也比WT分別降低23.88%和22.01%,這些細胞具有較低的飽和滲透勢,有助于轉基因棉花在鹽脅迫下維持更好的水分吸收和持水能力,保持較高的相對水含量,促使表達AtNHX1-TsVP的棉花維持更高的光合作用能力。光合參數(shù)測定表明,表達TsVP-AtHNX1的棉花比WT具有更高的Pn和Gs。在鹽堿地中表達AtNHX1-TsVP的棉花的出苗時間與受體GK35相比可提前2d。轉AtNHX1-TsVP基因棉花具有比野生型(29.53%)更高的出苗率(53.22%)和比野生型(25.299%)更高的成苗率(49.45%),在萌發(fā)期和苗期呈現(xiàn)出更高的耐鹽能力。轉AtNHX1-TsVP基因棉花在鹽堿地中表現(xiàn)出較高的籽棉產(chǎn)量,與野生型相比,平均增產(chǎn)22.46%。轉AtNHX1-TsVP基因棉花耐鹽性的增強可能與葉中更多的Na+、K+和Ca2+累積相關,這些陽離子的大量積累可能是AtNHX1-TsVP基因共表達導致的結果。陽離子在細胞中的適度積累有利于在鹽脅迫下植物細胞維持離子穩(wěn)態(tài)和細胞滲透勢,從而賦予葉片細胞更高的相對水含量和維持較高的碳同化能力。轉AtNHX1-TsVP基因棉花具有提高鹽堿地中棉花產(chǎn)量的潛力,可應用于提高我國鹽漬田的籽棉產(chǎn)量。轉ZmPLC1基因提高了棉花的耐旱性和干旱脅迫下的籽棉產(chǎn)量PI-PLC在植物耐旱機制中起著重要作用。利用農(nóng)桿菌介導法將ZmPLC1基因導入受體魯棉研19(Lu19)中獲得了表達ZmPLC1的棉花,Southern印跡分析、qRT-PCR和PI-PLC活性測定結果表明ZmPLC1基因整合到棉花基因組中并在細胞中有效表達。在苗期、現(xiàn)蕾期及花期三個階段研究了表達ZmPLC1的棉花對干旱逆境的耐受性。結果表明,在干旱生境下,表達ZmPLC1的株系PC1、PC2、PC3具有比受體Lu19更高的相對含水量、更好的滲透調節(jié)、改善的光合作用速率、更低的離子泄漏、更小的脂質膜過氧化和具有更高的籽棉產(chǎn)量。在新疆大田自然干旱條件下,轉基因株系PC1、PC2、PC3與野生型(WT)相比,蕾花期葉片具有更好的二氧化碳同化速率,更值得關注的是,在大田干旱條件下表達ZmPLC1的株系具有更高的經(jīng)濟產(chǎn)量。表達ZmPLC1的株系PC1、PC2、PC3與WT相比顯著增強了對干旱逆境的耐受性,且這種耐受性的提高與干旱脅迫下細胞積累更多溶質和ABA含量變化有關。依據(jù)溫室和大田的測試結果,轉TsVP、TsVP-AtHNX1和ZmPLC1基因的棉花提高了抗逆性,在干旱或高鹽分條件下具有更高的籽棉產(chǎn)量。TsVP、TsVP-AtNHX1、ZmPLC1基因是可用于棉花抗逆改良的優(yōu)良候選基因。
[Abstract]:One, the photosynthetic efficiency of crops and improve crop maize mutant Qi319-96 analysis of high efficiency mechanism of low phosphorus stress is closely related to the improvement of yield, understand the relationship between plant phosphorus efficiency and photosynthesis is an important issue in the sustainable development of agriculture. In maize mutant found in low phosphorus tolerant mutant Qi319-96 and its source is higher than the parent Qi319 photosynthetic efficiency under low phosphorus stress. The work in inorganic phosphate sufficient (+Pi, 1000 MKH2P04) and short (-P, 5 MKH2P04) of Qi319-96 and Qi319 plants of maize cultivation conditions in maize leaves as materials for comparative proteomics research, genomics and physiology, attempts to explore low phosphorus under the stress of Qi319-96 high photosynthetic efficiency. The molecular mechanism of low phosphorus tolerance mutant Qi319-96 increased with the improvement of the utilization efficiency of Pi cells on low phosphorus levels on plant growth and new Metabolism. Under low phosphorus conditions, no significant differences in total phosphorus content of the crown of the Qi319 and Qi319-96 Qi319-96, but the content of Pi is 52.94% higher than that of Qi319; Qi319-96 has higher chlorophyll content and photosynthetic capacity; the content of starch and sucrose in leaves of Qi319-96 and Qi319 is different, Qi319-96 leaves contain more sugar than hunger.Pi Qi319, Qi319-96 can better adjust the membrane lipid composition, have a higher level of V-ATPase activity, enhanced intracellular Pi recycling; chlorophyll biosynthesis improved, activity level of Qi319-96 in several Calvin cycle and "C02 pump" key enzyme is significantly higher than that of Qi319, which leads to low phosphorus stress photosynthesis performance under Qi319-96 the superior Qi319.Qi319-96 tolerance to low phosphorus stress increase is due to the improvement of the utilization efficiency of Pi inside cells, tolerance to low phosphorus maize germplasm can by cell engineering means Effect of.MiR395 and miR399 in the Qi319-96 mutant of maize leaf Pi level control MicroRNA (miRNA) involved in the regulation of plant growth and development and stress responses and other physiological processes. In comparison with the miRNA Qi319 and Qi319-96 in the leaves of the expression level of +P and -P by sequencing conditions. +P found 10 known as the miRNA family of 23 members and 40 new miRNA DifferentiallyExpressed in -P. There are 8 known maize miRNA family of 34 members and 23 new miRNA in Qi319 and Qi319-96 showed the expression level of some target genes of different expression levels of.-P in Qi319 and Qi319-96 between miR395 and miR399 was significantly different. In the regulation of maize mutant Qi319-96 leaf Pi levels play an important role in the performance of optical system performance and phosphorus carbon fixation system has an important role in hunger.Qi319-96 has better under low phosphorus stress reduced maize leaf Pn and Gs, but Ci Increase of non stomatal factors leads to the downregulation of Pn. Under low phosphorus Fv/Fm, Phi Ps II, RC/CS, ABS/CS, ETo/Cs, TRo/CS, O, Ir/Io, Phi PS I /PS II) down, and RuBPcase carboxylase carboxylation activity and DIo/CS, Vj, Vi increased, showed that phosphate starvation caused damage the electron transport chain, reduced the electron optical system transmission capacity, heat dissipation of absorbed light energy increased, ATP content decreased, carbon assimilation rate decreased. Comparing different genotypes, Qi319-96 has better o, Delta Ir/Io, phi (PS I and /PS II) RuBPcase carboxylase carboxylation activity, low phosphorus under duress Qi319-96 compared with Qi319 has higher level of ATP and carbon dioxide assimilation. The protein is to promote the stability of optical system in Qi319-96 low phosphorus tolerance with high abundance of chloroplast expression differences, coordination and efficiency of photosynthesis and chloroplast as sites, plant growth and abiotic stress response. Cut. Chloroplast proteome of Qi319-96 and Qi319 were analyzed. The reason of trying to understand Qi319-96 has better carbon assimilation capacity under low phosphorus stress. Under the two-dimensional gel electrophoresis, compared with that of the Qi319 significantly up-regulated the expression of Qi319-96 protein was 27, 24 of them were identified. These proteins can be identified divided into four categories: the first category is a protein involved in photosynthesis, including RuBisCO, ATP, CF1- synthase beta subunit of ATP synthase CF1- subunit, PS II oxygen enhanced protein; the second is involved in protein stability of photosynthesis system, including the PS II / assembly stability factor HCF136, FtsH protein, chlorophyll a/b binding protein; third is the electron transport chain related proteins, including Cytb6/f complex iron sulfur subunit, maize leaf ferredoxin reductase NADP+; fourth kinds of other proteins, including peptide prolyl CIS trans isomerase, pathogenesis related protein, this. Some of the Qi319-96 protein in chloroplast in high abundance high accumulation to promote the stability of optical system, function of coordination and efficiency, in under phosphorus starvation Qi319-96 has better electron transport properties and carbon assimilation. The above work reveals the mechanism of high efficiency of Qi319-96 is increased under low phosphorus, low phosphorus tolerance is due to the intracellular Pi utilization efficiency, performance of optical system performance and carboxylation system under low phosphorus stress photosynthesis system Qi319-96 has better. This work as understanding the mechanism of maize photosynthesis system in response to low phosphorus stress and provided new information, is expected to provide a new strategy for high photosynthetic efficiency of maize improved. Two, the creation of drought salt and drought tolerance of transgenic cotton germplasm, high salinity severely restricts the production and quality of cotton fiber. The effects of production on the urgent need to cultivate salt tolerant drought tolerant cotton varieties in water stress and Maintain / cotton production capacity or high salt conditions, yield and fiber quality of cotton to achieve stability. In this part, from thellungiellahalophila TsVP gene (encoding H+-PPase), AtNHX1 gene from Arabidopsis thaliana (encoding Na+/H+ and Antiporter) from maize ZmPLC1 gene (encoding PI-PLC) were introduced into cotton by indoor selection method combined with test field, on TsVP, TsVP-AtNHX1, ZmPLC1 transgenic cotton salt resistance and drought resistance of indoor and field tests, the breeding of salt tolerance improved drought tolerance to TsVP, TsVP-AtNHX1, ZmPLC1 transgenic cotton, cultivate a group of Cotton Drought Tolerance expression of new materials. Under salt stress TsVP gene enhances the transgenic cotton germination rate and yield of cotton in saline alkali soil in germination and seedling is the key of salinized cotton, cotton seed cotton yield in saline soil has attracted more attention. The expression of TsVP gene and receptor (wild type) of cotton in saline alkali soil in the germination time, germination rate, seedling rate, leaf carbon assimilation ability of bud stage, seed cotton yield and fiber quality were determined. The application value of cotton breeding materials selected by the evaluation of TsVP gene expression. The results show that compared the expression of TsVP gene cotton in saline soil in emergence time and wild type 2D in advance, and has a higher germination rate and seedling rate of field experiment. In 2013, CO2 assimilation rate expression of TsVP cotton was significantly higher than that of LM1138. receptor TsVP gene expression strains TP1, TP2 and TP3 optical net photosynthetic rate were higher than that of receptor 30.75%, 45.72% and 50.61%, the actual photochemical efficiency (phi PS II PS II) were also higher than that of the wild type 25%, 42.50% and 45%, the expression of TsVP in cotton compared with carbon assimilation receptor LM1138 better and photosynthetic electron transfer efficiency. Over expression of TsP T gene cotton yield is 14.81% higher than the wild type on average, compared with the wild type cotton fiber quality is also improved. The greenhouse breeding disc of seed germination test results showed that when the concentration of NaCl is greater than 100mM, 50% transgenic seed germination time required significantly less than the receptor LM1138. therefore, our work suggests that TsVP cotton can be used to improve the yield and quality of cotton fiber cotton economy in saline soil. AtNHX1-TsVP transgenic cotton improves salt tolerance and saline alkali soil in seed cotton yield in order to improve the high salt tolerance of cotton, cotton in spring GK35 AtNHX1 and TsVP gene were expressed both in greenhouse under salt stress. Or in Dongying saline soil, cotton leaf relative water content decreased, but the expression of AtNHX1-TsVP strain AT3 has higher relative water content than WT, enhanced the expression of TsVP-AtNHX1 gene in cotton Cell water retention capacity. In the greenhouse under salt stress or in saline alkali cations in transgenic lines AT3 in leaves of the total number of moles were higher than WT 35.79% and 23.87%, leaf saturated osmotic potential than WT were decreased by 23.88% and 22.01%, these cells have low saturation osmotic potential, contribute to transgenic cotton in salt under the stress of maintaining better moisture absorption and water holding capacity, higher relative water content, the expression of AtNHX1-TsVP in cotton maintained higher photosynthetic capacity. The photosynthetic parameters indicated that the expression of TsVP-AtHNX1 cotton had higher Pn and Gs. expression of AtNHX1-TsVP cotton in saline alkali soil than WT emergence time ahead of 2D. AtNHX1-TsVP transgenic cotton is compared with the wild type receptor GK35 (29.53%) was higher than the rate (53.22%) and wild type (25.299%) higher survival rate (49.45%), at the stage of germination and seedling showing Salt tolerance higher. AtNHX1-TsVP transgenic cotton in saline alkali soil showed higher seed cotton yield, compared with the wild type, the average yield of AtNHX1-TsVP transgenic cotton 22.46%. enhanced salt tolerance and leaves more Na+, K+ and Ca2+ accumulation, a large amount of these cationic accumulation may be the result of co expression of AtNHX1-TsVP gene in the cell. The cationic moderate accumulation in favor of ion homeostasis and cellular osmotic potential of plant cells under salt stress, thus giving leaf cell relative water content higher and maintain higher carbon assimilation capacity. AtNHX1-TsVP transgenic cotton has increased the yield of cotton in saline land in the potential, can be applied to improve our salted field seed cotton yield. ZmPLC1 transgenic cotton improves drought tolerance under drought stress and the yield of PI-PLC plays an important role in plant drought tolerance mechanism in use. Agrobacterium tumefaciens mediated transformation of ZmPLC1 gene into Lumianyan 19 receptor (Lu19) in the expression of ZmPLC1 cotton, Southern blot analysis, the test results of the qRT-PCR and PI-PLC activity showed that ZmPLC1 gene was integrated into the cotton genome and in cells express effectively. At the seedling stage, bud stage and florescence three stages of tolerance the expression of ZmPLC1 on Cotton Drought stress. The results show that in the arid habitat. The expression of ZmPLC1 strains PC1, PC2, PC3 with relative water content is higher than Lu19 receptor, better osmotic adjustment, improved photosynthetic rate, lower ion leakage, lipid peroxidation and membrane less is more high yield. In the field of Xinjiang under natural drought conditions, transgenic lines PC1, PC2, PC3 (WT) compared with the wild type, CO2 assimilation rate of leaf bud and flowering period is more and more concern is that in the field under drought condition ZmPLC1 strain has higher economic yield expression. The expression of ZmPLC1 strains PC1, PC2, PC3 compared with WT significantly enhanced tolerance to drought stress, and the increased resistance to drought stress and cell accumulation more solute and ABA content. According to the test results, the greenhouse and in field TsVP, TsVP-AtHNX1 and ZmPLC1 genes in cotton increased resistance, higher seed yield in.TsVP, drought or high salt conditions TsVP-AtNHX1, ZmPLC1 gene can be used for good candidate gene to improve the resistance of cotton.

【學位授予單位】:山東大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:S562;S513

【參考文獻】

相關期刊論文 前8條

1 Zhaoliang Zhang;Hong Liao;William J.Lucas;;Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants[J];Journal of Integrative Plant Biology;2014年03期

2 楊新泉;羅晶;胡瓊波;江正強;裴炎;;棉花胚珠中生長素水平的時空調控提高了棉花纖維的產(chǎn)量和品質[J];中國科學基金;2011年04期

3 程建峰;沈允鋼;;作物高光效之管見[J];作物學報;2010年08期

4 沈允鋼;程建峰;胡美君;;循環(huán)光合磷酸化和光合作用[J];生命科學;2010年05期

5 董合忠;辛承松;李維江;唐薇;張冬梅;羅振;;山東濱海鹽漬棉田鹽分和養(yǎng)分特征及對棉花出苗的影響[J];棉花學報;2009年04期

6 楊勁松;;中國鹽漬土研究的發(fā)展歷程與展望[J];土壤學報;2008年05期

7 樊廣華,谷淑波,寧堂原,李向東;生物發(fā)光法測定玉米籽粒中ATP的含量[J];現(xiàn)代儀器;2005年03期

8 夏銘,王小兵,李海波,吳平;水稻液泡ATPaseB亞基基因的克隆及其在低磷脅迫下的表達特征分析(英)[J];Acta Botanica Sinica;2002年05期

,

本文編號:1382091

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1382091.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶d90c9***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
91免费一区二区三区| 综合久综合久综合久久| 在线观看视频日韩精品 | 久久永久免费一区二区| 国产一区二区在线免费| 国产精品美女午夜视频| 亚洲中文字幕人妻系列| 99热中文字幕在线精品| 日本黄色录像韩国黄色录像| 国产精品亚洲一区二区| 自拍偷拍一区二区三区| 日本三区不卡高清更新二区| 中文字幕免费观看亚洲视频| 午夜传媒视频免费在线观看| 午夜免费精品视频在线看| 国产精品亚洲综合色区韩国| 九九热这里只有免费精品| 国产真人无遮挡免费视频一区| 国产一级内片内射免费看| 午夜精品麻豆视频91| 欧美一区日韩二区亚洲三区| 亚洲国产精品久久琪琪| 亚洲欧美日韩在线中文字幕| 成人精品网一区二区三区| 加勒比日本欧美在线观看| 91久久精品中文内射| 老富婆找帅哥按摩抠逼视频| 亚洲精品一区二区三区日韩| 婷婷基地五月激情五月| 国产精品人妻熟女毛片av久| 日韩高清毛片免费观看| 日韩精品视频免费观看| 噜噜中文字幕一区二区| 一区二区福利在线视频| 中文字幕人妻av不卡| 日本加勒比不卡二三四区| 精品国自产拍天天青青草原| 加勒比东京热拍拍一区二区| 丁香六月婷婷基地伊人| 97人妻精品一区二区三区免| 好吊妞视频免费在线观看|