面向癌癥代謝系統(tǒng)的建模及應(yīng)用研究
[Abstract]:Cancer is a special complex disease that has yet to be solved. Metabolism is the basis of survival of all living organisms. The phenotype of life is closely related to its metabolism. It is of great practical significance to understand the metabolism of cancer cells. In this paper, the metabolic system of different kinds of cancer cells is modeled by computer simulation, and the metabolic behavior of cancer cells is described qualitatively, which provides valuable clues for cancer research. Cancer cell metabolism is complex, so modeling and analysis of cancer cell metabolic system is slow. Due to the obvious phenotypic characteristics of cancer cells, we firmly believe that their internal metabolic state must have a certain regularity. Therefore, we try to simulate and analyze the metabolism of cancer cells on the computer by using the human genome network and multidimensional genomics data. The main features of this paper are as follows: (1) in view of the deficiency of the current cancer cell metabolic target and the lack of research on the pan-cancer metabolic layer, a method to study the universal characteristics of pan-cancer at the metabolic level is presented. We qualitatively predict significant metabolic changes in cancer cells based on a mathematical model that minimizes the inconsistency of changes in metabolic and genetic levels. This method has been widely used in many kinds of cancer cells, and we have successfully proved or predicted the common metabolic reaction, metabolic behavior and other characteristics of pan-cancer. (2) there are many feature extraction algorithms, there is no choice, and we rely heavily on the lack of data characteristics. Based on the metabolic behavior of cancer, a new feature variable extraction method is proposed, and a classification tree is constructed to identify cancer types. Taking the common response from pan-cancer level as a feature, the classification of cancer samples and normal samples obtained a good accuracy. Using the Boolean relation of cancer metabolic behavior to construct classification tree, we can preliminarily determine the cancer type of new samples. (3) to solve the problem that cancer heterogeneity is not considered in the current knockout work, a new type of cancer classification tree based on specific metabolic network is proposed. A method for predicting pan-cancer death and tumor suppressor genes. We reconstruct cancer-specific metabolic networks for each type of cancer and try to predict two types of cancer cells using computer simulation gene knockout experiments. By extending our method to multiple types of cancer, we can prove or predict the cancer specificity of a certain type of cancer, or two kinds of genes with lethal and suppressive effect on the pan-cancer level, which provide valuable clues for the related wet experiments.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:R73-3
【相似文獻(xiàn)】
相關(guān)期刊論文 前4條
1 徐曉燕;張瑩;方慧生;;基因組水平上重構(gòu)代謝網(wǎng)絡(luò)的研究進(jìn)展[J];藥物生物技術(shù);2012年02期
2 馬紅武,趙學(xué)明,遲萬(wàn)忠;應(yīng)用Excel處理生化過(guò)程數(shù)據(jù)(Ⅰ)代謝通量分析及代謝網(wǎng)絡(luò)優(yōu)化[J];計(jì)算機(jī)與應(yīng)用化學(xué);1998年06期
3 杜志成;關(guān)鵬;黃德生;;基于約束建模法的結(jié)核菌H37Rv代謝網(wǎng)絡(luò)分析[J];生物信息學(xué);2014年01期
4 李毅;鄭浩然;鈕俊清;李恒;周宏;;VFA:一種可視化代謝網(wǎng)絡(luò)建模工具[J];北京生物醫(yī)學(xué)工程;2008年05期
相關(guān)會(huì)議論文 前2條
1 楊雪蓮;唐雯;;幾種重要工業(yè)微生物代謝網(wǎng)絡(luò)的構(gòu)建與分析[A];第三屆全國(guó)化學(xué)工程與生物化工年會(huì)論文摘要集(上)[C];2006年
2 劉婷;劉立明;陳堅(jiān);;樹(shù)干畢赤酵母基因組規(guī)模代謝網(wǎng)絡(luò)模型的構(gòu)建與運(yùn)用[A];第四屆全國(guó)微生物基因組學(xué)學(xué)術(shù)研討會(huì)論文集[C];2012年
相關(guān)博士學(xué)位論文 前10條
1 黃偉;隨機(jī)微分方程系統(tǒng)在信號(hào)傳導(dǎo)通路和代謝網(wǎng)絡(luò)噪聲模型中的應(yīng)用[D];復(fù)旦大學(xué);2014年
2 蔣達(dá);代謝網(wǎng)絡(luò)若干計(jì)算問(wèn)題研究[D];復(fù)旦大學(xué);2009年
3 周婷婷;基于代謝網(wǎng)絡(luò)的系統(tǒng)發(fā)育重建方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2009年
4 彭佳揚(yáng);代謝網(wǎng)絡(luò)中功能模塊挖掘和進(jìn)化分析研究[D];中南大學(xué);2011年
5 趙靜;細(xì)胞代謝網(wǎng)絡(luò)的結(jié)構(gòu)、功能與進(jìn)化研究[D];上海交通大學(xué);2008年
6 趙建邦;基于代謝網(wǎng)絡(luò)的功能模式發(fā)現(xiàn)及系統(tǒng)發(fā)生分析研究[D];西安電子科技大學(xué);2011年
7 郝彤;基因組尺度人類(lèi)代謝網(wǎng)絡(luò)的亞細(xì)胞及組織定位[D];天津大學(xué);2010年
8 衛(wèi)海濱;C_3植物光合作用代謝網(wǎng)絡(luò)動(dòng)態(tài)的系統(tǒng)生物學(xué)分析[D];復(fù)旦大學(xué);2009年
9 耿俊;帶有酶系作用的生物系統(tǒng)的建模與過(guò)程優(yōu)化[D];上海交通大學(xué);2014年
10 王子楠;代謝網(wǎng)絡(luò)調(diào)控提高擬南芥維生素C含量的研究[D];復(fù)旦大學(xué);2009年
相關(guān)碩士學(xué)位論文 前10條
1 顧德清;基于基因組規(guī)模代謝網(wǎng)絡(luò)模型快速預(yù)測(cè)代謝工程敲除策略[D];華東理工大學(xué);2016年
2 周文衛(wèi);面向代謝網(wǎng)絡(luò)分析的二代測(cè)序數(shù)據(jù)分析工具整合與應(yīng)用研究[D];貴州師范大學(xué);2016年
3 遲保f ;釀酒酵母基因組代謝網(wǎng)絡(luò)模型的優(yōu)化及其應(yīng)用[D];西北農(nóng)林科技大學(xué);2016年
4 常風(fēng)云;整合氨基酸與轉(zhuǎn)錄組數(shù)據(jù)的代謝網(wǎng)絡(luò)模型分析與應(yīng)用[D];華中師范大學(xué);2016年
5 劉林;整合組學(xué)數(shù)據(jù)構(gòu)建條件特異性代謝網(wǎng)絡(luò)模型[D];上海交通大學(xué);2015年
6 李培順;基于代謝網(wǎng)絡(luò)分析預(yù)測(cè)菌種基因敲除靶點(diǎn)方法的研究[D];天津大學(xué);2015年
7 董風(fēng)晴;凝結(jié)芽孢桿菌36D1全基因組代謝網(wǎng)絡(luò)模型的構(gòu)建和驗(yàn)證[D];華東理工大學(xué);2017年
8 葉瑞;畢赤酵母全基因組代謝網(wǎng)絡(luò)模型構(gòu)建及其應(yīng)用[D];華東理工大學(xué);2017年
9 許揚(yáng);面向癌癥代謝系統(tǒng)的建模及應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
10 郝彤;枯草芽孢桿菌高質(zhì)量代謝網(wǎng)絡(luò)的初步構(gòu)建[D];天津大學(xué);2007年
,本文編號(hào):2253739
本文鏈接:http://sikaile.net/shoufeilunwen/mpalunwen/2253739.html