基于BP神經(jīng)網(wǎng)絡(luò)對(duì)北京市社區(qū)中醫(yī)藥服務(wù)發(fā)展影響因素研究
發(fā)布時(shí)間:2018-04-17 08:11
本文選題:BP神經(jīng)網(wǎng)絡(luò) + 服務(wù)發(fā)展。 參考:《北京中醫(yī)藥大學(xué)》2017年碩士論文
【摘要】:目的:通過(guò)文獻(xiàn)梳理北京市社區(qū)中醫(yī)藥服務(wù)發(fā)展中的問題,結(jié)合社區(qū)中醫(yī)藥相關(guān)政策,多角度構(gòu)建社區(qū)中醫(yī)藥服務(wù)發(fā)展影響因素初步框架。運(yùn)用BP神經(jīng)網(wǎng)絡(luò)方法建立社區(qū)中醫(yī)藥服務(wù)發(fā)展影響因素分析模型,計(jì)算北京市社區(qū)中醫(yī)藥服務(wù)發(fā)展影響因素指標(biāo)權(quán)重,分析北京市社區(qū)中醫(yī)藥服務(wù)發(fā)展中的主要影響因素,探討該方法在影響因素分析中的優(yōu)勢(shì)。方法:1、文獻(xiàn)研究法。收集CNKI,萬(wàn)方,維普等數(shù)據(jù)庫(kù)中基層中醫(yī)藥文獻(xiàn),歸納2005年至2016年社區(qū)中醫(yī)藥服務(wù)發(fā)展現(xiàn)狀及存在的問題。2、問卷調(diào)查法。以函調(diào)和現(xiàn)場(chǎng)調(diào)研方式,收集北京市64家社區(qū)衛(wèi)生服務(wù)中心中醫(yī)藥服務(wù)數(shù)據(jù)。3、BP神經(jīng)網(wǎng)絡(luò)分析。本研究采用BP神經(jīng)網(wǎng)絡(luò)方法分析北京市社區(qū)中醫(yī)藥服務(wù)發(fā)展影響因素權(quán)重。利用matlab 2010b軟件,構(gòu)架以北京市社區(qū)中醫(yī)藥服務(wù)發(fā)展影響因素為輸入變量,社區(qū)中醫(yī)藥服務(wù)發(fā)展效率為輸出變量的三層網(wǎng)絡(luò)模型,通過(guò)相關(guān)公式轉(zhuǎn)化成社區(qū)中醫(yī)藥服務(wù)發(fā)展影響因素權(quán)重值。4、DEA分析。運(yùn)用超效率CCR模型,測(cè)算社區(qū)中醫(yī)藥服務(wù)發(fā)展效率,將社區(qū)中醫(yī)藥發(fā)展效率作為BP神經(jīng)網(wǎng)絡(luò)模型輸出變量。5、頻數(shù)統(tǒng)計(jì)分析。對(duì)基本情況、人員、服務(wù)中部分指標(biāo)和制約因素采取頻數(shù)統(tǒng)計(jì)方法進(jìn)行分析,為本研究建議的提出提供數(shù)據(jù)支持。結(jié)果:本研究建立了以社區(qū)中醫(yī)藥服務(wù)發(fā)展影響因素指標(biāo)為輸入節(jié)點(diǎn),以社區(qū)中醫(yī)藥服務(wù)發(fā)展效率為輸出節(jié)點(diǎn),隱節(jié)點(diǎn)數(shù)為8個(gè)的三層神經(jīng)網(wǎng)絡(luò)模型。其中,樣本數(shù)為64例,權(quán)重結(jié)果如下:中醫(yī)藥業(yè)務(wù)用房面積(0.0974),中藥飲片種類(0.1002),中醫(yī)藥設(shè)備種類(0.1118),中醫(yī)師數(shù)(0.1006),中級(jí)以上中醫(yī)師數(shù)(0.1376),中醫(yī)藥適宜技術(shù)種類(0.1250),新開展的中醫(yī)藥適宜技術(shù)種類(0.1174),重點(diǎn)人群中醫(yī)藥保健種類(0.0964),中醫(yī)藥慢病管理種類(0.1136)。結(jié)論:1、人員、技術(shù)是北京市社區(qū)中醫(yī)藥服務(wù)發(fā)展主要影響因素。北京市社區(qū)中醫(yī)藥影響因素權(quán)重值前四位的因素為中級(jí)以上中醫(yī)師數(shù)、中醫(yī)藥適宜技術(shù)種類、新開展的中醫(yī)藥適宜技術(shù)種類、中醫(yī)藥慢病管理種類。2、BP網(wǎng)絡(luò)是一種優(yōu)質(zhì)的分析社區(qū)中醫(yī)藥服務(wù)發(fā)展影響因素的方法。在運(yùn)用兩種方法構(gòu)建社區(qū)中醫(yī)藥服務(wù)發(fā)展影響因素模型時(shí),BP神經(jīng)網(wǎng)絡(luò)模型R2值達(dá)到0.97左右,而多元線性回歸模型R2僅為0.1991,回歸模型各自變量P值大于0.05,模型沒有統(tǒng)計(jì)學(xué)意義。
[Abstract]:Objective: to analyze the problems in the development of community traditional Chinese medicine (TCM) services in Beijing, and to construct a preliminary framework of influencing factors for the development of community traditional Chinese medicine (TCM) from different angles.Using BP neural network method to establish the analysis model of influencing factors of community traditional Chinese medicine service development, to calculate the index weight of influencing factors of community traditional Chinese medicine service development in Beijing, and to analyze the main influencing factors in the development of community traditional Chinese medicine service in Beijing.The advantages of this method in the analysis of influencing factors are discussed.Methods: 1, literature research.The basic TCM documents in CNKI, Wanfang and Weipu databases were collected, and the status quo and existing problems of community TCM service development from 2005 to 2016 were summarized.The data of traditional Chinese medicine service in 64 community health service centers in Beijing were collected by correspondence and field investigation. BP neural network was used to analyze the data.In this study, BP neural network method was used to analyze the weight of factors influencing the development of community traditional Chinese medicine service in Beijing.By using matlab 2010b software, a three-layer network model with the factors influencing the development of community traditional Chinese medicine service in Beijing as input variable and the efficiency of community traditional Chinese medicine service development as output variable is constructed.The weight value of influencing factors of community traditional Chinese medicine service development was transformed into DEA analysis by relevant formulas.The development efficiency of community traditional Chinese medicine (TCM) service is calculated by using the super-efficiency CCR model. The development efficiency of community TCM is regarded as the output variable of BP neural network model .5. the frequency is statistically analyzed.The basic situation, personnel, some indicators and constraints in the service are analyzed by means of frequency statistics to provide data support for the proposal of this study.Results: in this study, a three-layer neural network model was established with the index of influencing factors of community TCM service development as the input node, the community TCM service development efficiency as the output node and the number of hidden nodes as 8 nodes.Among them, the sample size is 64,The weight results are as follows: the area of accommodation used in Chinese medicine business is 0.0974m, the type of Chinese medicine pieces is 0.1002U, the type of equipment of Chinese medicine is 0.1118m, the number of TCM doctors is 0.1006m, the number of doctors above intermediate level is 0.1376m, the category of suitable technology of traditional Chinese medicine is 0.1250m, the newly developed type of suitable technology of traditional Chinese medicine is 0.1174.The type of health care of Chinese medicine is 0.0964, and the type of management of chronic disease of traditional Chinese medicine is 0.1136.Conclusion 1, personnel and technology are the main influencing factors for the development of community traditional Chinese medicine service in Beijing.The first four factors of the weight value of the influencing factors of traditional Chinese medicine in Beijing community are the number of Chinese medicine doctors at or above the intermediate level, the types of appropriate techniques of traditional Chinese medicine, and the new types of suitable techniques of traditional Chinese medicine.BP network is a good method to analyze the influencing factors of community TCM service development.When two methods were used to construct the model of influencing factors of community TCM service development, the R2 value of BP neural network model was about 0.97, while that of multivariate linear regression model was only 0.1991.The regression model's variables P value was more than 0.05, and the model had no statistical significance.
【學(xué)位授予單位】:北京中醫(yī)藥大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:R197.61
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田愛紅;武薇;楊紀(jì)鋒;王艷紅;楊莉;;社區(qū)中醫(yī)藥資源配置現(xiàn)狀研究[J];衛(wèi)生經(jīng)濟(jì)研究;2017年05期
2 李毅;姜天英;劉振國(guó);;基于DEA分析的中部六省高等教育與經(jīng)濟(jì)發(fā)展的關(guān)系研究[J];黑龍江高教研究;2017年03期
3 周英武;任明;胡鏡清;;中醫(yī)藥在社區(qū)慢病防治中存在的問題與對(duì)策[J];中醫(yī)藥管理雜志;2016年22期
4 孫濤;丁小燕;周巍;;社區(qū)衛(wèi)生服務(wù)中心中醫(yī)藥服務(wù)能力的現(xiàn)狀調(diào)查[J];中國(guó)全科醫(yī)學(xué);2016年30期
5 李祺;孫鈺;崔寅;;基于DEA方法的京津冀城市基礎(chǔ)設(shè)施投資效率評(píng)價(jià)[J];干旱區(qū)資源與環(huán)境;2016年02期
6 龐清;王,
本文編號(hào):1762786
本文鏈接:http://sikaile.net/shoufeilunwen/mpalunwen/1762786.html
最近更新
教材專著