基于機(jī)艙環(huán)境背景下的沖擊射流與湍流熱對(duì)流的實(shí)驗(yàn)研究
[Abstract]:The cockpit of 122 passenger plane is a special microenvironment with closed, narrow and dense personnel. The main factors affecting the distribution of air flow in the cabin are: the air flow from the air supply system through the tuyere, and the air flow generated by passengers' mouth and nose breathing. The flow of air driven by thermal buoyancy caused by the heat dissipation of passengers and aircraft itself and the separated flow caused by the complex geometric structure in the cockpit of an airliner. The air flow out of the tuyere is similar to that of the free jet, which forms an impact effect when the seat and other equipment are encountered, while the air flow driven by the thermal buoyancy caused by the heat dissipation of the passenger itself forms a turbulent thermal convection. Therefore, the air flow in the cockpit of an airliner is a kind of complex flow which includes impinging jet and turbulent thermal convection. The study of air flow in the cockpit of an airliner is a necessary prerequisite for creating a safe, comfortable and healthy cockpit environment. In this paper, hot wire velocimeter technology and particle image velocimeter technology are used to study the impinging jet and turbulent thermal convolution based on the background of cabin environment, which is the basis of the study of airflow motion in the cockpit of an actual passenger plane. The flow field characteristics of impingement turbulent jet were studied by hot wire velocimeter technique. By using IFA300 constant temperature hot wire velocimeter, standard X double wire hot wire probe and boundary layer X double wire hot wire probe, the axial direction of free jet zone of impingement turbulent jet is measured in detail at a resolution higher than the minimum time scale of turbulence. The radial distribution of the radial velocity component and the axial distribution of the radial and axial velocity components in the wall jet region are obtained, and the average velocity, turbulence intensity, Reynolds shear stress, high order moment and energy spectrum are obtained. The distribution of dissipation spectrum and spatial characteristic scale in free jet region and wall jet region. The multi-scale (multimodal) analysis of the measured velocity field of impinging turbulent jet is carried out by using wavelet transform and Hilbert-Huang transform, respectively, and the turbulent energy cascade process of different scale (modal) energy spectrum is described. Based on this and the comparison of the two decomposition methods, it is found that the Hilbert-Huang transform can more accurately depict the changes and functions of different scale (modal) structures in the process of turbulent energy transfer. Finally, the average frequency of different modal structures in the free jet region and the wall jet region and the energy density distribution of the flow structure at different average frequencies are obtained by means of Hilbert-Huang transformation method. The respiratory flow field of warm body dummy model under constant temperature and heating conditions was studied by using particle image velocimeter technique. The periodic phase average method is used to calculate the turbulent flow field with periodic variation under two working conditions, and the temporal and spatial distribution and evolution characteristics of phase average velocity, turbulence intensity and vorticity under different phases are obtained. The intrinsic orthogonal decomposition method is used to decompose the respiratory transient turbulent field into four parts: average flow field, quasi-ordered flow field, transitional flow field and turbulent flow field. The characteristics, evolution law and cyclic variation characteristics of the four separate flow fields are studied. The spatial phase relationship between Reynolds stress and average velocity deformation rate under different phases is studied by using spatial cross-correlation technique.
【學(xué)位授予單位】:天津大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:O357.5;O358
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 冀美萍;沖擊射流強(qiáng)化換熱的原理及其研究進(jìn)展[J];甘肅科技;2004年05期
2 焦磊,王樂勤,徐如良;雷諾數(shù)對(duì)淹沒沖擊射流流場影響的數(shù)值預(yù)測[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2005年04期
3 高慧;宋宇宸;韓博;;可壓縮軸對(duì)稱沖擊射流流場的數(shù)值模擬[J];中國石油大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
4 徐驚雷,徐忠,肖敏,黃淑娟;沖擊射流的研究概述[J];力學(xué)與實(shí)踐;1999年06期
5 何楓,姚朝暉,謝峻石;三維亞聲速?zèng)_擊射流流場的數(shù)值模擬[J];推進(jìn)技術(shù);2002年01期
6 樊靖郁,張燕,王道增;動(dòng)水中含污染物沖擊射流橫向高濃度聚集區(qū)的形成機(jī)理和特性分析[J];水科學(xué)進(jìn)展;2005年05期
7 甘才俊;何楓;姚朝暉;楊京龍;;沖擊射流中反饋環(huán)機(jī)理的再研究[J];力學(xué)學(xué)報(bào);2009年02期
8 徐驚雷,徐忠,張X元,黃淑娟;雷諾數(shù)對(duì)半封閉紊流沖擊射流流場影響的實(shí)驗(yàn)研究[J];南京航空航天大學(xué)學(xué)報(bào);2001年02期
9 徐驚雷,徐忠,黃淑娟,張X元;紊流沖擊射流數(shù)學(xué)研究中的壁面函數(shù)法(英文)[J];Transactions of Nanjing University of Aeronautics & Astronau;2001年01期
10 汪健生;王振川;李美軍;;不同工作因數(shù)下方波沖擊射流的換熱特性[J];化工學(xué)報(bào);2013年07期
相關(guān)會(huì)議論文 前10條
1 姚朝暉;何楓;韓標(biāo);許宏慶;;高速?zèng)_擊射流流場特性與噪聲機(jī)理的研究[A];流動(dòng)顯示’2002第五屆全國流動(dòng)顯示學(xué)術(shù)會(huì)議論文集[C];2002年
2 邢云緋;仲峰泉;張新宇;;沖擊射流冷卻結(jié)構(gòu)中煤油傳熱特性的數(shù)值研究[A];第七屆全國流體力學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2012年
3 邢云緋;仲峰泉;張新宇;;瞬態(tài)熱敏液晶測溫技術(shù)在沖擊射流實(shí)驗(yàn)中的應(yīng)用[A];第十三屆全國實(shí)驗(yàn)力學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2012年
4 姚朝暉;崔新光;;超聲速弱欠膨脹沖擊射流中的渦合并現(xiàn)象的研究[A];北京力學(xué)會(huì)第14屆學(xué)術(shù)年會(huì)論文集[C];2008年
5 邢云緋;仲峰泉;張新宇;;沖擊射流冷卻結(jié)構(gòu)中煤油傳熱特性的數(shù)值研究[A];高超聲速專題研討會(huì)暨第五屆全國高超聲速科學(xué)技術(shù)會(huì)議論文集[C];2012年
6 關(guān)暉;吳錘結(jié);涂善東;;Y形沖擊射流微混合器流場結(jié)構(gòu)與混合特性的數(shù)值模擬[A];慶祝中國力學(xué)學(xué)會(huì)成立50周年暨中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年
7 鄺九杰;隋丹;金東范;盧天健;徐明龍;;軸流風(fēng)扇沖擊射流下的泡沫鋁熱沉在電子冷卻中的應(yīng)用[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
8 于尚旺;姚朝暉;何楓;;基于旋渦強(qiáng)度的沖擊射流渦結(jié)構(gòu)分析[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
9 徐驚雷;劉凱禮;張X元;;過膨脹超聲速?zèng)_擊射流中非定,F(xiàn)象的PIV實(shí)驗(yàn)與數(shù)值模擬研究[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
10 于明州;陳麗華;譚曉軍;;沖擊射流擬序結(jié)構(gòu)的大渦模擬研究[A];中國力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
相關(guān)博士學(xué)位論文 前7條
1 白貴平;膠片涂布線熱風(fēng)沖擊干燥特性及節(jié)能優(yōu)化研究[D];湖南大學(xué);2016年
2 李永平;沖擊射流換熱的大渦模擬[D];中國科學(xué)技術(shù)大學(xué);2016年
3 姚世勇;基于機(jī)艙環(huán)境背景下的沖擊射流與湍流熱對(duì)流的實(shí)驗(yàn)研究[D];天津大學(xué);2015年
4 李長庚;基于沖擊射流的電子器件冷卻方法研究[D];中南大學(xué);2009年
5 張燕;橫流沖擊射流渦旋結(jié)構(gòu)的實(shí)驗(yàn)和數(shù)值研究[D];上海大學(xué);2005年
6 焦磊;連續(xù)—脈沖射流理論研究及其在原油底泥處理中的應(yīng)用[D];浙江大學(xué);2005年
7 石藝娜;金屬?zèng)_擊射流形成、斷裂和顆;植佳芯縖D];中國工程物理研究院;2008年
相關(guān)碩士學(xué)位論文 前10條
1 張海龍;亞音速?zèng)_擊射流共振的反饋理論與實(shí)驗(yàn)研究[D];東北大學(xué);2013年
2 桂進(jìn)樂;基于微小通道與沖擊射流的電子器件冷卻機(jī)理研究[D];華中科技大學(xué);2015年
3 劉祖鈴;狹縫噴嘴組沖擊射流傳熱性能研究[D];重慶大學(xué);2012年
4 劉海;超聲速欠膨脹沖擊射流的大渦模擬[D];清華大學(xué);2010年
5 黃靈敏;基于紅外熱像技術(shù)的周期性沖擊射流強(qiáng)化換熱研究[D];中國計(jì)量學(xué)院;2013年
6 于峰;納米流體沖擊射流的流動(dòng)與換熱特性研究[D];南京理工大學(xué);2010年
7 周祺e,
本文編號(hào):2481214
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2481214.html