地球磁層頂通量傳輸事件的軸向研究
[Abstract]:The magnetopause flux transmission event (Flux Transfer Event,FTE) is considered to be a phenomenon related to the reconnection of the magnetic field, which is marked by the bipolar variation of the normal component of the magnetic field measured by the satellite at the top of the magnetopause. So far, there are still some debates about the essence, formation mechanism and location of FTE. It is necessary to determine the axial direction of FTE not only to study the geometric structure of FTE and to understand the plasma dynamics, but also to help us distinguish the different formation mechanism and generation position of FTE. In this paper, the axial research of FTE is taken as the main line, and the main contents and conclusions are summarized as follows: (1) A new multi-point analysis method is developed to determine the axial direction of FTE. This method is based on the pure geometric assumption that the structure is left and right symmetry. For the FTE structure embedded in the magnetopause current sheet, regardless of its physical properties, it basically satisfies this symmetry condition, so the new method has a wide range of applications. The model test and practical application show that, The new method is more effective and reliable in determining the axial direction than the traditional methods such as Grad-Shafranov (GS) method and magnetic field minimum variance analysis method, as well as the closer method based on cylindrical symmetry. (2) the axial and coincidence of FTE are determined. Under the suitable multi-satellite configuration, A new method is designed to reconstruct the spatial distribution of FTE magnetic field. The application of this method to the two FTE observed by THEMIS and Cluster respectively shows that it can reconstruct the magnetic field spatial distribution of the structure quickly and effectively, thus helping us to speculate the magnetic field configuration of the structure. Understand the time variation of satellite measurement data and obtain the spatial distribution characteristics of other physical quantities relative to the structural magnetic field. (3) the first statistical analysis of FTE axis is carried out by using the new FTE axial determination method. The results show that although most of the FTE observed in the low latitudes of the fainting side have an axial direction close to the north and south, the source is still the subsolar component reconnection line. Different from the traditional understanding that the Japanese and lower point component reconnection line is a separation line with almost unchanged direction, the actual diurnal point component reconnection line has considerable curvature at the top of the magnetosphere. (4) for the first time, it is found that the magnetic field signal of FTE is formed by multi-X-ray reconnection. GS reconstruction results show that there are multiple substructures in events with such magnetic signals, which is consistent with the pattern of multiple flux tubes formed by reconnection of multiple X-rays. However, the substructures are arranged sequentially from large to small on the top of the magnetosphere, which is not predicted by the traditional multi-X-ray reconnection model. In order to explain this phenomenon, we propose a new model to describe the formation process of FTE: reconnection continues to occur at the top of the magnetosphere and forms a cuneiform configuration in the magnetic field near the main X-ray; The reconnection rate changes periodically, and a continuous number of small island structures are formed by tearing mode instability in the cuneiform magnetic field line as it grows. These small magnetic island structures merge with each other, and due to the limitation of the cuneiform magnetic field, they form a number of FTE, arranged in order by size. Finally, under the action of magnetic sheath flow pressure and magnetic tension, the reconnection position is left. (5) A series of continuous FTE. of "abnormal" diurnal motion measured in the low latitude magnetopause of the fainting side are analyzed. By comparing the velocity of the event with the FTE motion model, it can be found that the magnetic tension of the actual reconnected magnetic field is much larger than that given by the model in order to counter the larger wake magnetic sheath velocity near the dizzy side magnetopause at this time. This shows that when the magnetohydrodynamic effect may play an important role, the existing model can not accurately describe the magnetic field and plasma environment, so it needs to be modified.
【學位授予單位】:中國科學院國家空間科學中心
【學位級別】:博士
【學位授予年份】:2017
【分類號】:P353
【相似文獻】
相關期刊論文 前10條
1 周國成;磁層頂間斷的識別[J];空間科學學報;1981年01期
2 傅竹風;磁層頂極尖區(qū)的理論探討[J];空間科學學報;1983年02期
3 方德聲;;劉振興因地磁層空間研究再獲嘉獎[J];科學;2002年02期
4 曲少杰;沈超;劉振興;田葆寧;;關于磁層中磁力線幾何結構的研究[J];空間科學學報;2006年06期
5 林瑞淋;張效信;劉四清;王永利;龔建村;;高緯磁層頂位形統(tǒng)計分析[J];地球物理學報;2010年01期
6 都亨,李再琨;磁層物理學[J];自然雜志;1980年12期
7 吳洪鐘,都亨;磁層頂對磁層磁場的影響[J];空間科學學報;1982年04期
8 楊少峰,朱崗];關于磁層邊界區(qū)Kelvin-Helmholtz不穩(wěn)定性的研究[J];地球物理學報;1985年05期
9 王水,朱烈;磁流體力學旋轉間斷的穩(wěn)定性[J];科學通報;1985年04期
10 王忷權;磁層頂?shù)入x子體中的混沌現(xiàn)象[J];地球物理學報;1991年04期
相關會議論文 前10條
1 林郁;朱崗昆;;低緯磁層頂邊界層開爾文-亥姆霍茲不穩(wěn)定性的分析[A];中國科學院地球物理研究所論文摘要集(1988)[C];1989年
2 劉子謙;;磁層頂?shù)男D非對稱性[A];第27屆中國氣象學會年會空間天氣自主資料應用與模式集成分會場論文集[C];2010年
3 劉振興;張洪;;磁層中不同尺度的等離子體團事件[A];1995年中國地球物理學會第十一屆學術年會論文集[C];1995年
4 呂建永;J.K.Chao;J.H.Shue;S.C.Fu;;磁層頂法向和形狀的統(tǒng)計研究[A];1997年中國地球物理學會第十三屆學術年會論文集[C];1997年
5 劉振興;濮祖蔭;;我國磁層物理研究的進展和展望[A];《地球物理學報》紀念中國地球物理學會50周年?痆C];1997年
6 劉振興;;全球磁層粒子成像探測及磁暴和亞暴警報的新想法[A];1998年中國地球物理學會第十四屆學術年會論文集[C];1998年
7 金曙平;劉紹亮;崔海龍;;向陽側磁層頂通量繩結構的觀測與模擬研究[A];中國地球空間雙星探測計劃科學研討會論文摘要[C];2002年
8 肖池階;濮祖蔭;黃宗英;傅綏燕;謝倫;宗秋剛;T.Fritz;K.-H.Glassmeier;劉振興;曹晉濱;史建魁;沈超;王忷權;陳濤;;2001年1月26日高緯磁層頂通量管事件的觀測研究(Ⅱ)——空間電流密度計算及分析[A];第十屆全國日地空間物理學術討論會論文摘要集[C];2003年
9 黃宗英;濮祖蔭;肖池階;宗秋剛;傅綏燕;謝倫;史全岐;曹晉濱;劉振興;沈超;史建魁;路立;王忷權;陳濤;T.Fritz;K.-H.Glassmeier;P.Daly;Rème;;2001年1月26日高緯磁層頂通量管事件的觀測研究(Ⅰ)[A];第十屆全國日地空間物理學術討論會論文摘要集[C];2003年
10 黃宗英;濮祖蔭;肖池階;宗秋剛;傅綏燕;謝倫;史全岐;曹晉濱;劉振興;沈超;史建魁;路立;王^,
本文編號:2478305
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2478305.html