百千伏超快電子衍射系統(tǒng)的研發(fā)
[Abstract]:In recent ten years, the ultrafast electron diffraction and imaging technology have been developed rapidly. in which the electron pulse energy of the direct current electron gun is developed to several hundred kilovolts from the start of several tens of kilovolts, while the most recent microwave electron gun applied in this field raises the energy to the magnitude of the megavolt; the longitudinal pulse width (time scale) of the electronic pulse is changed from the picosecond magnitude to the femtosecond level, And is even expected to reach the order of a second. On this basis, a variety of time-resolved electronic imaging techniques, including ultrafast scanning electron microscopy and ultrafast transmission electron microscopy, have been developed. The scope of the study also extends from the lattice detection to the surface physics, superconductivity, magnetism, plasma, biology, chemistry and so on, and gradually shows its strong vitality. In this background, we have carried out the R & D and construction of the 100kV ultrafast electron diffraction system. The relevant simulation required by the system design is carried out first, and then a multifunctional compact 100-kilovolt ultrafast electron diffraction system is built, which comprises a 100kV direct current photocathode electron gun, an electronic pulse control device, an ultra-high vacuum chamber and a sample sending and adjusting device, A detection imaging device, a data automatic acquisition system, and an external device, and the like. By simulation we find that the expansion speed in the z-direction (longitudinal direction) will be greatly reduced when the electron pulse passes through the boundary of the electric field, which has a decisive influence on the behavior of the later stage of the electronic pulse. The traditional Mean field model is modified and developed, and a reasonable scheme for describing the internal electron pulse motion of the ultrafast electron diffraction system is given, so that it can accurately describe the movement behavior of the ultrafast electron beam, and is superior to other models. The design of the electron gun greatly avoids the occurrence of local field intensity mutation, so that the electron gun can work stably at a voltage of one hundred kilovolts, the reflection working mode is increased, and the single-shot electron yield is expected to reach the order of millions, so as to realize the detection of the non-reversible process. The special coaxial symmetrical structure ensures the symmetry and stability of the electric field, the good magnetic shielding effect ensures the quality of the electronic pulse, the external protective resistor and the protective cover, and the like, and the safety of the operation of the electron gun is ensured. The complete set adopts a special embedded installation structure design, so that the distance between the cathode of the electron gun and the sample is as short as 130 mm in the case of a magnetic lens, and the shortest length of the magnetic lens can be less than 100 mm. The maximum vacuum degree of the cavity of the device can reach 10-10Torr, and consists of a target chamber, an electron gun chamber, a pump reflector chamber, a Faraday cylinder chamber, an exhaust chamber and the like. The ultra-high vacuum target chamber has a number of windows with a lateral 34 mm diameter flange window special design. The device pump laser reflection mode is specially designed so as to be incident in the opposite direction of the electronic pulse motion. And the later stage of the sample target chamber can be connected with a plurality of other devices to realize the multi-function expansion. The sample feed section has a five-dimensional adjustment range. The sample carrier _ sample rack can ensure the implementation of multiple detection schemes in the future, can be replaced by other devices, and can be upgraded. The detection and imaging system of the device comprises a specially designed Faraday tube, an electronic pulse imaging system, and the like. The data collection system developed by Labview is in the process of R & D. In the time-resolved diffraction (TR-RHEED) of sample surface time-resolved diffraction (TR-RHEED), it was found that the diffraction fringe was split and the distance along with the delay time exhibited a Gaussian distribution. The higher the grade the higher the diffraction fringes, the smaller the splitting pitch. We suspect that the phenomenon is related to the electron emission of the sample, and the peak of the surface electric field after the sample pump is estimated to be on the order of 107 V/ m by the split-pitch approximation. The experiment is expected to obtain sample lattice information and surface electric field information at the same time, and a new time-resolved electron diffraction detection method is provided.
【學(xué)位授予單位】:中國科學(xué)院大學(xué)(中國科學(xué)院物理研究所)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:O572.322
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高占;;反射電子衍射圖的座標(biāo)計(jì)算法[J];激光與紅外;1978年04期
2 葉恒強(qiáng);有簡單取向關(guān)系的兩晶體間電子衍射圖相重的規(guī)律[J];物理學(xué)報(bào);1979年01期
3 顧世杰;具有微微秒時(shí)間分辨率的電子衍射[J];物理;1983年09期
4 周景良;;近代礦物學(xué)第十七講 礦物晶體的電子衍射[J];地質(zhì)地球化學(xué);1984年04期
5 黃綺,唐景昌;光電子衍射[J];物理;1985年05期
6 李玉清;劉錦巖;;晶體取向關(guān)系的電子衍射——矩陣分析法[J];物理測試;1986年01期
7 孫大明;;電子衍射圖像拍攝的新方法[J];物理實(shí)驗(yàn);1989年05期
8 孫大明;聞杰;汪白揚(yáng);;電子衍射用銅膜氧化現(xiàn)象的觀察和分析[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);1989年02期
9 張錫樓;;電子衍射的實(shí)驗(yàn)誤差研究[J];哈爾濱科學(xué)技術(shù)大學(xué)學(xué)報(bào);1989年03期
10 李方華;;高分辨電子顯微術(shù)與電子衍射相結(jié)合測定晶體結(jié)構(gòu)[J];自然科學(xué)進(jìn)展;1993年05期
相關(guān)會議論文 前8條
1 孫俊良;;基于電子衍射的結(jié)構(gòu)確定[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第13分會:晶體工程[C];2014年
2 李婷;王河錦;;一種電子衍射指標(biāo)的新方法-行指標(biāo)化[A];中國晶體學(xué)會第五屆全國會員代表大會暨學(xué)術(shù)大會(電子衍射分會場)論文摘要集[C];2012年
3 謝中維;葉恒強(qiáng);朱靜;;《集成化電子衍射程序包的研制》[A];第八次全國電子顯微學(xué)會議論文摘要集(Ⅱ)[C];1994年
4 孫瑞濤;韓明;尹文紅;于忠輝;;電子衍射的相對強(qiáng)度[A];第十二屆中國體視學(xué)與圖像分析學(xué)術(shù)會議論文集[C];2008年
5 王蓉;;電子衍射動力學(xué)理論[A];Advanced High-Resolution Electron Microscopy-Theory and Application--Proceeding of CCAST (World Laboratory) Workshop[C];2002年
6 韓曉東;毛圣成;張澤;;背散射電子衍射在彈-塑性轉(zhuǎn)變中的應(yīng)用(邀請報(bào)告)[A];第二屆全國背散射電子衍射(EBSD)技術(shù)及其應(yīng)用學(xué)術(shù)會議暨第六屆全國材料科學(xué)與圖像科技學(xué)術(shù)會議論文集[C];2007年
7 邊為民;鄧江寧;;電子衍射花樣綜合分析應(yīng)用程序[A];第十三屆全國電子顯微學(xué)會議論文集[C];2004年
8 李子安;楊槐馨;Yamauchi T;Ueda Y;李建奇;;β-Ca_(0.33)V_2O_5晶體的電子衍射與高分辨像研究[A];2006年全國電子顯微學(xué)會議論文集[C];2006年
相關(guān)重要報(bào)紙文章 前1條
1 中國科學(xué)院院士 李方華;科學(xué)與科學(xué)家的成長[N];光明日報(bào);2003年
相關(guān)博士學(xué)位論文 前4條
1 李夢超;百千伏超快電子衍射系統(tǒng)的研發(fā)[D];中國科學(xué)院大學(xué)(中國科學(xué)院物理研究所);2017年
2 李靜;直流加速—射頻壓縮超快電子衍射系統(tǒng)的研制[D];華東師范大學(xué);2013年
3 吳建軍;超快電子衍射系統(tǒng)的理論與實(shí)驗(yàn)研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2006年
4 李任愷;兆電子伏超快電子衍射的理論與實(shí)驗(yàn)研究[D];清華大學(xué);2010年
相關(guān)碩士學(xué)位論文 前6條
1 黃江;電子動力衍射模擬方法及應(yīng)用的研究[D];湘潭大學(xué);2015年
2 曹琦;超快電子衍射圖像獲取與解析系統(tǒng)[D];華東師范大學(xué);2011年
3 劉虎林;超快電子衍射系統(tǒng)中電子槍的理論及實(shí)驗(yàn)研究[D];中國科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2008年
4 王海姣;蒸鍍薄膜的電子衍射研究[D];西安工業(yè)大學(xué);2012年
5 周然;固相燒結(jié)制備的層狀Li_(0.5)Na_(0.5)CoO_2顯微結(jié)構(gòu)研究[D];中南大學(xué);2014年
6 宋寶來;四方和六方晶系基本特征平行四邊形表的統(tǒng)一及電子衍射花樣的標(biāo)定分析與改進(jìn)[D];湘潭大學(xué);2007年
,本文編號:2435094
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2435094.html