雙層納米板結(jié)構(gòu)的非線性動(dòng)力學(xué)特性分析
[Abstract]:Since the discovery and successful preparation of carbon nanotubes, the rapid development of nano-science and technology has become an important field of scientific research in the present day, and a large number of experts and scholars have conducted extensive and in-depth research. Due to the excellent chemical, electrical and mechanical properties of the nano-materials and the structure, it is widely used in the micro-nano-motor system (MEMS/ NEMS), the biosensor, the atomic force microscope and the field filter. The design and manufacture of these components depend on the study of the mechanical properties of the nano-structure, so the research on the mechanical properties of the nano-structure is of great significance. Based on the non-local plate theory, the nonlinear free vibration and the main resonance properties of the two-layer nano-plate structure under different boundary conditions are studied, and the expressions of the nonlinear vibration frequency and the amplitude-frequency response relation of the structure are obtained. The homoclinic and hybrid dynamics of the structure are studied by the global perturbation method. The main research work is as follows: the nonlinear bending vibration characteristics of the double-layer nano-plate structure are studied. considering the geometric large deformation of the structure in the vibration, the nonlinear dynamic equation of the structure is established by using the nonlinear strain displacement relation, and the main common amplitude frequency response relation of the structure is analyzed by using the multi-scale method under the dynamic boundary conditions of the simple branch and the solid support, The influence of the non-local effect and the structure parameters on the amplitude-frequency response curve and the nonlinear vibration frequency is discussed, and the vibration form of the inner resonance is not found in the double-layer nano-plate structure. The non-linear vibration characteristics of the two-layer nano-plate structure embedded in the elastic foundation are studied, and the frequency characteristics of the nonlinear free vibration of the structure under the four boundary conditions are compared. Considering the elastic medium environment at the structure, the influence of the stiffness coefficient of the elastic foundation on the nonlinear main-amplitude-frequency response curve and the free-vibration frequency of the structure is discussed. The relationship between the aspect ratio of the nano-plate and the structure-order and the second-order non-linear vibration frequency ratio is discussed. In this paper, the behavior of the co-sink and mixed kinetics of the two-layer plate structure with buckling under the effect of internal load is studied. The double-layer nano-structure experiences synchronous buckling and asynchronous buckling under the action of the internal load, and under the two different buckling conditions, the improved high-dimensional Melnikov method is used to study the homoclinic and hybrid motion of the structure, and the judging conditions of the existence of the cross-section and the sink track are established. Under the condition of asynchronous buckling, the parameters of the structure's different mixed motion and the super-mixed motion are divided, and the Lyapunov exponent and the Lyapunov dimension of the structural vibration in these parameters are calculated. The influence of the non-local parameters, i.e. the small-scale effect on the structure and the sink and the hybrid motion, is discussed in the two buckling conditions. In this paper, the homoclinic motion of the two-layer nano-plate structure excited by the static load in the plane and the transverse simple harmonic excitation is studied. The nonlinear dynamic equation of the structure is established by using the double-mode Galerkin truncation method, and the rotational inertia of the structure is found in the modeling process, so that the Hamiltonian symmetries of the unperturbed vibration system can be destroyed, and according to the literature of Reddy and Amabili, The effect of the moment of inertia can be neglected in the subsequent nonlinear dynamics analysis. In this paper, the homoclinic phenomenon of the structure in four kinds of buckling is discussed with the improved high-dimensional and sink Melnikov method, and the analytical judgment condition of the structure on the plane of different phases is given, and the effect of the small-scale effect and the boundary condition on the structure and the sink movement is also analyzed. In this paper, the homoclinic phenomenon and the mixed motion of the double-mode buckling double-layer nano-plate structure under the excitation of the parameters are studied. under the condition of synchronous and asynchronous buckling of the first and second order modes of the structure, the homoclinic and the mixed motion of the structure are analyzed in the eight-dimensional phase space by using the generalized melnikov method, The results of the analysis and the Lyapunov exponent and the published literature are compared with the results of the molecular dynamics method, and the influence of the factors such as the small-size effect on the nonlinear dynamic behavior of the structure and the sink is analyzed.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O327
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳式剛;一維映象和混沌運(yùn)動(dòng)[J];自然雜志;1983年09期
2 王光瑞,劉伍明,楊匡宋,王繼國(guó);一維映象的分歧與混沌運(yùn)動(dòng)[J];紅河學(xué)院學(xué)報(bào);1988年02期
3 李豐果,林木欣;用計(jì)算機(jī)演示混沌運(yùn)動(dòng)[J];大學(xué)物理;1999年02期
4 鄒光勝,金基鐸,張宇飛;兩端固支輸流管的穩(wěn)定性和混沌運(yùn)動(dòng)分析[J];沈陽(yáng)航空工業(yè)學(xué)院學(xué)報(bào);2000年03期
5 包日東;畢文軍;聞邦椿;;兩端固定輸流管道混沌運(yùn)動(dòng)預(yù)測(cè)[J];振動(dòng)與沖擊;2008年06期
6 閆慶華;韓保紅;王民全;程兆剛;陶辰立;;基于神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)控制的混沌運(yùn)動(dòng)的研究[J];中國(guó)制造業(yè)信息化;2010年15期
7 趙躍宇;約束對(duì)系統(tǒng)運(yùn)動(dòng)特性的影響[J];湘潭大學(xué)自然科學(xué)學(xué)報(bào);1989年04期
8 王光瑞;任光耀;;圓映象中混沌運(yùn)動(dòng)的測(cè)度[J];新疆大學(xué)學(xué)報(bào)(自然科學(xué)版);1989年01期
9 王多,陳立群;呈現(xiàn)混沌運(yùn)動(dòng)的一個(gè)實(shí)驗(yàn)裝置[J];力學(xué)與實(shí)踐;1993年02期
10 張輝,吳淇泰;混沌運(yùn)動(dòng)的控制[J];力學(xué)進(jìn)展;1995年03期
相關(guān)會(huì)議論文 前10條
1 曹東興;張偉;范金紅;;懸臂梁倍周期分叉和混沌運(yùn)動(dòng)的實(shí)驗(yàn)研究[A];第十一屆全國(guó)非線性振動(dòng)學(xué)術(shù)會(huì)議暨第八屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文摘要集[C];2007年
2 姚國(guó);李鳳明;;亞音速下大撓度板的混沌運(yùn)動(dòng)及其控制[A];第九屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊(cè)[C];2012年
3 姚國(guó);;亞音速下二維大撓度薄板的混沌運(yùn)動(dòng)[A];第九屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊(cè)[C];2012年
4 曹東興;張偉;范金紅;;懸臂梁倍周期分叉和混沌運(yùn)動(dòng)的實(shí)驗(yàn)研究[A];第十一屆全國(guó)非線性振動(dòng)學(xué)術(shù)會(huì)議暨第八屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2007年
5 郝育新;張偉;趙秋玲;;復(fù)合邊界條件下功能梯度板1:1內(nèi)共振的周期與混沌運(yùn)動(dòng)[A];第十三屆全國(guó)非線性振動(dòng)暨第十屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集[C];2011年
6 劉麗麗;金棟平;胡海巖;;狀態(tài)保持階段繩系衛(wèi)星的混沌運(yùn)動(dòng)[A];第十一屆全國(guó)非線性振動(dòng)學(xué)術(shù)會(huì)議暨第八屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文摘要集[C];2007年
7 陳玲莉;梁歐;王丁旺;黎紅崗;;改進(jìn)遺傳神經(jīng)網(wǎng)絡(luò)控制混沌運(yùn)動(dòng)的研究[A];第八屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議論文集[C];2008年
8 羅曉曙;;隨機(jī)噪聲作用下電力系統(tǒng)動(dòng)力學(xué)行為研究[A];第六屆全國(guó)網(wǎng)絡(luò)科學(xué)論壇暨第二屆全國(guó)混沌應(yīng)用研討會(huì)論文集[C];2010年
9 郭翔鷹;張偉;陳麗華;;外激勵(lì)作用下復(fù)合材料層合板的混沌運(yùn)動(dòng)[A];第九屆全國(guó)振動(dòng)理論及應(yīng)用學(xué)術(shù)會(huì)議論文摘要集[C];2007年
10 周良強(qiáng);陳芳啟;陳予恕;;一類新四維二次系統(tǒng)的混沌運(yùn)動(dòng)[A];第十三屆全國(guó)非線性振動(dòng)暨第十屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議摘要集[C];2011年
相關(guān)博士學(xué)位論文 前4條
1 王宇;雙層納米板結(jié)構(gòu)的非線性動(dòng)力學(xué)特性分析[D];哈爾濱工業(yè)大學(xué);2016年
2 姜宗福;半導(dǎo)體中場(chǎng)疇混沌運(yùn)動(dòng)的理論模型[D];北京師范大學(xué);1991年
3 楊陽(yáng);板殼的磁彈性與流體彈性問(wèn)題的混沌運(yùn)動(dòng)分析[D];燕山大學(xué);2010年
4 高學(xué)軍;鐵道客車系統(tǒng)橫向運(yùn)動(dòng)對(duì)稱/不對(duì)稱分岔行為與混沌研究[D];西南交通大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 鐘瑞;電力系統(tǒng)的混沌運(yùn)動(dòng)分析及控制方法研究[D];東北大學(xué);2014年
2 唐德霖;永磁無(wú)刷直流電機(jī)驅(qū)動(dòng)的含間隙機(jī)構(gòu)的混沌運(yùn)動(dòng)研究[D];西南交通大學(xué);2015年
3 劉麗靜;電磁場(chǎng)中桿和板的分岔和混沌運(yùn)動(dòng)[D];燕山大學(xué);2008年
4 金華;單粒子在非軸對(duì)稱八極形變Y_(32)+Y_(3-2)勢(shì)場(chǎng)中的混沌運(yùn)動(dòng)[D];上海師范大學(xué);2005年
5 茍鵬東;載流矩形薄板的磁彈性分岔和混沌運(yùn)動(dòng)的模態(tài)分析[D];燕山大學(xué);2010年
6 高琴;一類隨機(jī)非線性動(dòng)力系統(tǒng)的混沌運(yùn)動(dòng)研究[D];天津工業(yè)大學(xué);2006年
7 侯磊;輸電線路導(dǎo)線兩自由度舞動(dòng)的分岔與混沌運(yùn)動(dòng)研究[D];哈爾濱工業(yè)大學(xué);2011年
8 陳文欽;激光脈沖作用下Paul阱中單離子的規(guī)則與混沌運(yùn)動(dòng)[D];湖南師范大學(xué);2007年
9 任必春;變參數(shù)欠驅(qū)動(dòng)平面五桿機(jī)構(gòu)混沌運(yùn)動(dòng)的研究[D];西南交通大學(xué);2014年
10 徐艷敏;電磁場(chǎng)中板的穩(wěn)定性分岔[D];燕山大學(xué);2008年
,本文編號(hào):2420031
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2420031.html