空間調(diào)制型全偏振成像系統(tǒng)關(guān)鍵誤差分析與性能優(yōu)化研究
[Abstract]:The polarization imaging system can not only obtain the two-dimensional light intensity distribution information of the target, but also obtain the polarization information corresponding to the target light intensity distribution, that is, the Stokes vector information. The Stokes vector information has the ability to enhance the contrast of the target. Targets can be highlighted from complex background information. The traditional polarization imaging system contains mechanical rotation components, which need to be collected several times in time to obtain the complete Stokes vector information of the target, so it is difficult to observe the polarization information of moving targets. The spatial modulation full polarization imaging system uses the wedge or Savart polarizer as the spatial modulation module, modulates the four parameters of the Stokes vector S0 / S1 / S2 / S3 onto the carrier at different frequencies. Thus, the interference pattern containing Stokes vector information can be obtained by a single acquisition at the same time. Compared with the traditional polarization imaging system, the spatial modulation full polarization imaging system has the advantages of simple structure and easy realization. Therefore, spatial modulation full polarization imaging system will be widely used in remote sensing, military and biomedical fields. In the practical engineering application, the system error will inevitably affect the Stokes vector measurement accuracy of the spatial modulation full polarization imaging system. The angle error of rotation half-wave plate and polarizer is the key error of the system, and they have an important influence on the precision of polarization measurement. In this paper, the adjustment angle error model of spatial modulation full polarization imaging system is presented. The matrix error model based on spatial demodulation algorithm is constructed to analyze the influence of the angle error of the mounting angle. The different polarization states of the incident light are selected by the Poincare sphere sampling method, and the angle errors of the rotating half-wave plate are respectively adjusted. The influence of the angle error and coupling angle error of the polarizer on the precision of polarization measurement is verified by simulation and the simulation results are analyzed. In this paper, a performance optimization method based on the condition number of the measurement matrix is proposed. The method obtains the optimal system by finding the measurement matrix of the minimum condition number. The results show that the condition number of the system measurement matrix is related to the thickness of Savart veneer. The system with Savart veneer thickness of 6mm / 10mm / 12mm / 23mm and 25mm is tested by simulation. It is found that when the thickness of Savart veneer is 23mm, the minimum value of measuring matrix condition is 2.06, and the influence of adjustment angle error on the system is the least. Therefore, the optimization method based on the condition number of measurement matrix can improve the performance of the system. However, this method has some limitations. The limitation of optimization method is studied by norm compatibility theorem, and the analytical results are given. In order to verify the effectiveness of the conditional number based optimization method, a complete system measurement error representation method, called Stokes basis vector method, is proposed. By using this method, the measurement errors of four ground state polarized light, namely, natural light, 0 擄/ 90 擄line polarized light, 45 擄/ 135 擄line polarized light and left / right circularly polarized light, need to be detected. The precision of polarization measurement of spatial modulation full polarization imaging system with angle error can be solved.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:O436.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳發(fā)堂,呂且妮,王應(yīng)宗;透鏡成像系統(tǒng)物空間調(diào)制的輸出效應(yīng)與光互連[J];上海電力學(xué)院學(xué)報(bào);1999年02期
2 劉強(qiáng);李雙;龔平;;空間調(diào)制線(xiàn)偏振光譜測(cè)量的誤差影響仿真分析[J];光學(xué)學(xué)報(bào);2014年07期
3 高靜;計(jì)忠瑛;王忠厚;崔燕;;空間調(diào)制干涉光譜成像儀的星上定標(biāo)系統(tǒng)[J];光子學(xué)報(bào);2010年05期
4 高靜;計(jì)忠瑛;王忠厚;崔燕;;空間調(diào)制干涉光譜成像儀的星上定標(biāo)系統(tǒng)穩(wěn)定性研究[J];光譜學(xué)與光譜分析;2010年04期
5 劉飛;易林;;非線(xiàn)性空間調(diào)制對(duì)兩分量玻色-愛(ài)因斯坦凝聚孤子演化的影響[J];光電子.激光;2011年12期
6 鄭瑩;梁靜秋;梁中翥;;空間調(diào)制傅里葉變換紅外光譜儀多級(jí)微反射鏡傾斜誤差分析[J];光譜學(xué)與光譜分析;2012年07期
7 高瞻,相里斌,周仁魁,薛鳴球;空間調(diào)制干涉成象光譜儀中入射狹縫離焦的分析[J];光子學(xué)報(bào);1998年01期
8 相里斌,趙葆常,薛鳴球;空間調(diào)制干涉成像光譜技術(shù)[J];光學(xué)學(xué)報(bào);1998年01期
9 呂金光;梁靜秋;梁中翥;秦余欣;田超;;空間調(diào)制傅里葉變換紅外光譜儀干涉系統(tǒng)透射效率研究[J];光譜學(xué)與光譜分析;2013年03期
10 崔燕;計(jì)忠瑛;石大蓮;高靜;相里斌;;空間調(diào)制干涉光譜成像儀線(xiàn)性度測(cè)試[J];光子學(xué)報(bào);2009年11期
相關(guān)博士學(xué)位論文 前5條
1 楊平;空間調(diào)制無(wú)線(xiàn)傳輸關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2013年
2 周恩治;空間調(diào)制與大規(guī)模MIMO傳輸關(guān)鍵技術(shù)研究[D];西南交通大學(xué);2016年
3 劉震;空間調(diào)制型全偏振成像系統(tǒng)關(guān)鍵誤差分析與性能優(yōu)化研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2016年
4 馬寧;廣義多天線(xiàn)系統(tǒng)中的空間調(diào)制技術(shù)研究[D];天津大學(xué);2014年
5 王波;可見(jiàn)—近紅外微型空間調(diào)制光譜儀關(guān)鍵技術(shù)研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2010年
相關(guān)碩士學(xué)位論文 前10條
1 辛秀;MIMO通信系統(tǒng)中連續(xù)相位調(diào)制和空間調(diào)制技術(shù)的研究[D];五邑大學(xué);2015年
2 管春萌;基于粒子群優(yōu)化的空間調(diào)制信號(hào)檢測(cè)算法的研究[D];哈爾濱工業(yè)大學(xué);2015年
3 楊松;基于空間調(diào)制的多天線(xiàn)傳輸技術(shù)研究[D];哈爾濱工業(yè)大學(xué);2015年
4 張?jiān)茓?大規(guī)模MIMO檢測(cè)技術(shù)研究與仿真[D];電子科技大學(xué);2015年
5 仲君;MIMO系統(tǒng)中自適應(yīng)空間調(diào)制與天線(xiàn)選擇技術(shù)的研究[D];山東大學(xué);2015年
6 李垠澤;60GHz通信系統(tǒng)中信道編碼及調(diào)制技術(shù)研究[D];電子科技大學(xué);2014年
7 陶娟;大維度MIMO和空間調(diào)制信號(hào)檢測(cè)算法研究[D];西安電子科技大學(xué);2014年
8 楊宗菲;基于空間調(diào)制的新型MIMO傳輸技術(shù)研究[D];電子科技大學(xué);2014年
9 馬榮;基于空間調(diào)制的室內(nèi)可見(jiàn)光MIMO通信系統(tǒng)的研究[D];南京郵電大學(xué);2015年
10 解丹妮;基于2D-CAP的室內(nèi)光無(wú)線(xiàn)傳輸技術(shù)研究[D];大連海事大學(xué);2016年
,本文編號(hào):2417224
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2417224.html