繆子能量測(cè)量及其在繆子散射成像中的應(yīng)用研究
[Abstract]:The natural cosmic ray mouton scattering imaging technology has many advantages, such as no artificial radiation source, strong penetration, sensitive to high Z material, etc. It is suitable for detecting hidden high Z material, and has become a research hotspot in recent years. However, due to the low flux of natural cosmic rays, it takes a long time to realize material identification. In this paper, theoretical and experimental studies have been carried out on energy measurement of cosmic ray moutons based on time-of-flight method, application of energy information in moutons scattering imaging and rapid identification of high-Z materials. In order to effectively introduce energy information into Miao scattering imaging and shorten the time required for material identification, firstly, based on Miuron scattering imaging theory, the condition of introducing accurate mouton energy information is studied. The physical limit of Miao scattering imaging method in material identification. In order to solve the problem of limited precision of practical meatus energy measurement technique, a material identification method with the introduction of muzzle energy segment is established. The influence of uncertainty of energy measurement on the introduction of energy information and material identification in scattering imaging is studied by Monka simulation. The requirements of Miurus scattering imaging method for energy measurement are analyzed. The time-of-flight method, which does not significantly change the physical properties of the moutons, is used to measure the moutons energy. A multi-layer time-of-flight method is proposed to improve the accuracy of energy measurement in a limited flight space. The corresponding energy segmentation method is established. The relationship between the performance of energy segmentation and the number of examples, time resolution and the number of layers of time-of-flight detector is discussed. Based on the MRPC detector with time resolution about 100ps, the experimental platform of time-of-flight energy measurement is built, and the delay of time-of-flight measurement system is corrected, and the energy measurement and segmentation based on time-of-flight method are realized. On the basis of the principle experimental device of Mius scattering imaging in Tsinghua University, the first experimental system of Miu scattering imaging with the function of time-of-flight energy measurement is set up, and the simultaneous measurement of track and energy of cosmic ray moutons is realized. With reference to the experimental system, the corresponding Monka simulation scheme is established, and the theoretical expectation of the material identification method based on the energy measurement and segmentation of the time-of-flight method is given. The experimental results are basically in line with the expectation. In the aspect of high Z material identification, the rule of the detection rate and misjudgment rate of high Z material with the number of cases is given by using hypothesis test and ROC analysis, and the energy measurement and segmentation by time-of-flight method are demonstrated through the performance comparison. The AUC value of the ROC curve is about 25% higher than that without energy information.
【學(xué)位授予單位】:清華大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:O572.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 豐樹(shù)強(qiáng);;背散射成像的蒙特卡羅模擬[J];中國(guó)原子能科學(xué)研究院年報(bào);2007年00期
2 范承亮,丁科,張建貴,李彩文,宋守根;逆散射成像的算法[J];中南工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2001年04期
3 顧本立,鄧東云;井間電磁逆散射成像[J];地球物理學(xué)進(jìn)展;1993年03期
4 岳軍;;球面簇上的拉當(dāng)問(wèn)題及其在逆散射成像中的應(yīng)用[J];西安電子科技大學(xué)學(xué)報(bào);1989年04期
5 金紅娣;潘冬明;楊光;;巷道超前探測(cè)散射成像處理技術(shù)[J];物探與化探;2012年06期
6 張東文;陶進(jìn)緒;葉寒生;;超聲逆散射成像問(wèn)題中正則化參數(shù)研究[J];聲學(xué)技術(shù);2008年03期
7 盧明輝;張才;徐基祥;王守東;魏建新;宋雪娟;;溶洞模型逆散射成像技術(shù)[J];石油勘探與開(kāi)發(fā);2010年03期
8 王勇;;X射線背散射成像技術(shù)在安檢中的應(yīng)用[J];中國(guó)安防;2012年Z1期
9 古宇飛;閆鑌;李磊;魏峰;韓玉;陳健;;基于全變分最小化和交替方向法的康普頓散射成像重建算法[J];物理學(xué)報(bào);2014年01期
10 徐基祥;王平;林蓓;;地震波逆散射成像技術(shù)潛力展望[J];中國(guó)石油勘探;2006年04期
相關(guān)會(huì)議論文 前6條
1 王忠仁;孫建國(guó);陳麗虹;;任意散射條件下地震散射成像方法研究[A];2001年中國(guó)地球物理學(xué)會(huì)年刊——中國(guó)地球物理學(xué)會(huì)第十七屆年會(huì)論文集[C];2001年
2 陳禮強(qiáng);凌劍;黃承志;;單顆粒光散射成像與示蹤分析技術(shù)[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第9分會(huì)場(chǎng)摘要集[C];2012年
3 楊寶剛;吳東流;任華友;;復(fù)合材料的康普頓背散射成像(CST)檢測(cè)的初步研究[A];復(fù)合材料:生命、環(huán)境與高技術(shù)——第十二屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集[C];2002年
4 尹軍杰;王偉;王峗;劉學(xué)偉;李文慧;;散射成像的優(yōu)勢(shì)[A];中國(guó)地球物理學(xué)會(huì)第22屆年會(huì)論文集[C];2006年
5 李冬至;廖然;曾楠;何永紅;馬輝;;癌變組織偏振光散射成像[A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
6 王晨生;潘曉杰;袁靜;王明榮;王雪琴;李建國(guó);;超聲光散射成像技術(shù)對(duì)鑒別乳腺良、惡性腫瘤的應(yīng)用價(jià)值[A];中國(guó)超聲醫(yī)學(xué)工程學(xué)會(huì)第二次全國(guó)淺表器官及外周血管超聲醫(yī)學(xué)學(xué)術(shù)會(huì)議論文匯編[C];2009年
相關(guān)博士學(xué)位論文 前4條
1 羅志飛;繆子能量測(cè)量及其在繆子散射成像中的應(yīng)用研究[D];清華大學(xué);2016年
2 孟慶陽(yáng);微波逆散射成像中的若干問(wèn)題研究[D];浙江大學(xué);2017年
3 高鵬飛;暗場(chǎng)散射成像在刺激響應(yīng)型反應(yīng)監(jiān)控中的應(yīng)用及高性能成像系統(tǒng)研究[D];西南大學(xué);2015年
4 申建華;基于TSOM算法的電磁波逆散射成像研究[D];浙江大學(xué);2013年
相關(guān)碩士學(xué)位論文 前5條
1 周聃;X波段雷達(dá)散射成像系統(tǒng)頻率綜合源設(shè)計(jì)[D];南京理工大學(xué);2015年
2 莫仲念;基于稀疏約束的電磁場(chǎng)逆成像算法研究[D];南昌大學(xué);2016年
3 王樹(shù)燕;超聲光散射成像對(duì)乳腺腫塊良惡性鑒別診斷的應(yīng)用研究[D];青海大學(xué);2017年
4 孫丹丹;精密表面缺陷特性及光學(xué)顯微散射成像系統(tǒng)的研究[D];浙江大學(xué);2006年
5 成艷;探地雷達(dá)線性逆散射成像算法研究[D];廈門(mén)大學(xué);2008年
,本文編號(hào):2203890
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2203890.html