天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于腔量子電動(dòng)力學(xué)的光機(jī)械系統(tǒng)與自旋壓縮研究

發(fā)布時(shí)間:2018-03-25 20:09

  本文選題:腔量子電動(dòng)力學(xué) 切入點(diǎn):腔光機(jī)械 出處:《中國(guó)科學(xué)技術(shù)大學(xué)》2015年博士論文


【摘要】:信息科學(xué)是研究信息運(yùn)動(dòng)規(guī)律和應(yīng)用方法的科學(xué),近30年來(lái),信息科學(xué)與量子力學(xué)相結(jié)合而興起的量子信息科學(xué)受到了廣泛的關(guān)注。量子信息科學(xué)由于一些新奇特性,比如量子態(tài)的不可克隆性、線性疊加性、糾纏特性等,使其在量子計(jì)算、量子信息、量子度量等方面顯示出十分廣闊技術(shù)應(yīng)用前景。量子計(jì)算機(jī)的并行處理能力使其計(jì)算速度遠(yuǎn)遠(yuǎn)快于經(jīng)典計(jì)算機(jī),在密碼破解、量子搜索等方面展示出了巨大的潛力。量子信息利用量子態(tài)不可被克隆性、糾纏特性等特點(diǎn)已經(jīng)在量子密碼、量子通信等實(shí)用化領(lǐng)域取得了重大的進(jìn)展。測(cè)量高精度物理量的需求推動(dòng)了量子度量學(xué)的發(fā)展,在量子時(shí)鐘和引力探測(cè)等領(lǐng)域的研究也越來(lái)越熱,在有些領(lǐng)域已經(jīng)突破了經(jīng)典物理的極限,正在向著海森堡極限逼近。量子信息科學(xué)的優(yōu)勢(shì)吸引著人們尋求各色各樣的信息載體來(lái)實(shí)現(xiàn)量子計(jì)算機(jī)。量子計(jì)算機(jī)在物理實(shí)現(xiàn)上需要考慮各種折衷因素,在離子阱、超導(dǎo)電子電路、線性光學(xué)、腔量子電動(dòng)力學(xué)裝置和分子核磁共振等系統(tǒng)中已經(jīng)取得了很大的進(jìn)展。但是實(shí)際量子物理體系中會(huì)有各種各樣的耗散,而且量子比特?cái)?shù)目越多耗散會(huì)越嚴(yán)重。幸運(yùn)的是有些體系在某些方面的優(yōu)勢(shì)非常明顯,因此混合物理系統(tǒng)也受到了越來(lái)越多的關(guān)注。腔光機(jī)械系統(tǒng)在量子信息存儲(chǔ)、量子混沌、波長(zhǎng)轉(zhuǎn)換等方面有很大的潛在應(yīng)用前景,特別是其與原子或者量子點(diǎn)等耦合形成的混合物理體系,更是近年來(lái)研究的一個(gè)熱點(diǎn)。腔量子電動(dòng)力學(xué)(C-QED)是研究原子和光學(xué)模式之間相互耦合的一個(gè)重要領(lǐng)域。在高品質(zhì)因子的光學(xué)腔中,光子與原子可以進(jìn)行多次相互作用,實(shí)現(xiàn)原子與光場(chǎng)很強(qiáng)耦合,從而制備自旋壓縮態(tài)(SSS)用于量子度量。在本篇論文中,我們首先簡(jiǎn)要介紹量子信息科學(xué)的一些基本知識(shí),討論了腔光機(jī)械系統(tǒng)和腔量子電動(dòng)力學(xué)裝置。對(duì)于腔光機(jī)械系統(tǒng),我們研究了該系統(tǒng)一些基本性質(zhì)和應(yīng)用,還分析了其與量子點(diǎn)耦合形成的混合物理體系、單光子和雙光子的輸入輸出、聲子激光。對(duì)于腔量子電動(dòng)力學(xué)裝置,我們就制備自旋壓縮態(tài)方面做了詳細(xì)的討論,主要包括以下幾點(diǎn):在腔壓縮體系中通過(guò)失諧來(lái)加強(qiáng)自旋壓縮;在氮-空穴(NV)色心體系中基于幾何相位通過(guò)聲子誘導(dǎo)自旋壓縮;通過(guò)連續(xù)驅(qū)動(dòng)NV自旋鏈產(chǎn)生壓縮穩(wěn)態(tài)。具體內(nèi)容為如下四個(gè)方面:1.腔光機(jī)械系統(tǒng)研究腔光機(jī)械系統(tǒng)是實(shí)現(xiàn)量子通信和量子計(jì)算一個(gè)非常重要的系統(tǒng),里面有豐富的物理現(xiàn)象和很多潛在的應(yīng)用。我們?cè)诠鈾C(jī)械誘導(dǎo)透明、布里淵散射誘導(dǎo)透明以及非互易光存儲(chǔ)等方面做了一些簡(jiǎn)單的討論。在光機(jī)械與量子點(diǎn)耦合形成的混合物理體系中,我們發(fā)現(xiàn)了真空腔誘導(dǎo)透明現(xiàn)象,從強(qiáng)弱耦合兩個(gè)角度做了詳細(xì)的分析。此外,我們還將經(jīng)典控制光與真空腔誘導(dǎo)下的透明現(xiàn)象做了對(duì)比。最后,為了能更好地理解誘導(dǎo)透明現(xiàn)象,我們?cè)谝话闳芗?jí)原子體系中,通過(guò)非相干控制實(shí)現(xiàn)了電磁誘導(dǎo)透明(EIT)與Autler-Towns劈裂(ATS)的相互轉(zhuǎn)換,并對(duì)兩者做了區(qū)分。在光機(jī)械的輸入輸出研究中,我們得到了在平方耦合的情況下單光子的輸出譜,其展現(xiàn)出聲子偶數(shù)激發(fā)的特點(diǎn)。以此為基礎(chǔ),我們進(jìn)一步研究了在實(shí)空間下雙光子的輸入輸出情況。對(duì)于聲子激光,我們提出了幾個(gè)可行的實(shí)現(xiàn)方案。2.失諧加強(qiáng)腔自旋壓縮我們理論上詳細(xì)討論了實(shí)驗(yàn)上已經(jīng)實(shí)現(xiàn)的腔自旋壓縮方案中各個(gè)參數(shù)對(duì)自旋壓縮的影響,與近共振的方案相比,我們發(fā)現(xiàn)失諧可以將腔壓縮度從原來(lái)的S一2/5大幅度提高到S-2/3,其中S是總自旋數(shù)。此外,我們還發(fā)現(xiàn)原子和腔之間弱的相互作用和大失諧可以加強(qiáng)原子系綜的自旋壓縮。解析結(jié)果表明,自旋壓縮來(lái)源于由激光驅(qū)動(dòng)誘導(dǎo)的與自旋態(tài)相關(guān)的幾何相位,因此在這里大失諧非常重要。對(duì)于實(shí)際的物理系統(tǒng)來(lái)說(shuō),一些噪聲是不可避免的。我們分析了由于原子拉曼散射對(duì)自旋壓縮所產(chǎn)生的影響,結(jié)果表明通過(guò)合適的失諧可以優(yōu)化自旋壓縮。大失諧激光驅(qū)動(dòng)使進(jìn)入到光學(xué)腔中的有效光場(chǎng)減少,因此需要更長(zhǎng)的時(shí)間才能達(dá)到最優(yōu)的壓縮。在這種情況下,單自旋退相干不得不考慮,我們發(fā)現(xiàn)更強(qiáng)的驅(qū)動(dòng)光可以有效的減弱這種噪聲對(duì)自旋壓縮的破壞。大失諧激光驅(qū)動(dòng)也有可能激發(fā)光學(xué)腔的其他光學(xué)模式,我們對(duì)多模式光場(chǎng)與原子系綜的耦合也做了詳細(xì)的討論,發(fā)現(xiàn)其它光場(chǎng)模式對(duì)自旋壓縮的影響完全可以忽略。最后,我們將實(shí)驗(yàn)上可實(shí)現(xiàn)的參數(shù)代入方案中,其結(jié)果說(shuō)明通過(guò)失諧的調(diào)節(jié)來(lái)加強(qiáng)自旋壓縮在目前的實(shí)驗(yàn)條件下很容易實(shí)現(xiàn)。作為產(chǎn)生自旋壓縮的一個(gè)補(bǔ)充,基于此方案我們對(duì)通過(guò)測(cè)量來(lái)實(shí)現(xiàn)非經(jīng)典態(tài)也做了一些討論。3.氮-空穴(NV)色心體系中基于幾何相位的聲子誘導(dǎo)自旋壓縮我們提出了一個(gè)通過(guò)單機(jī)械模式誘導(dǎo)幾何相位的方案來(lái)實(shí)現(xiàn)自旋壓縮,在這里NV鏈散射耦合到單機(jī)械振子上。幾何相位由于其自身的屬性,對(duì)聲子的初態(tài)非常不敏感,這是實(shí)驗(yàn)上一個(gè)非常重要的優(yōu)勢(shì)。我們研究了在不同的熱噪聲和機(jī)械品質(zhì)因子(Q)下的自旋壓縮性質(zhì),結(jié)果表明完美單軸壓縮可以在熱噪聲和機(jī)械品質(zhì)因子合適的比值下實(shí)現(xiàn)。在實(shí)際的物理體系中,NV鏈會(huì)與一些熱庫(kù)耦合,這種耦合引起了退相干,因此對(duì)自旋壓縮產(chǎn)生了破壞。我們通過(guò)動(dòng)力學(xué)退耦合脈沖序列來(lái)抑制這種熱庫(kù)對(duì)自旋壓縮的影響,在高品質(zhì)因子的金剛石氮-空穴自旋鏈中,我們可以實(shí)現(xiàn)完美的單軸自旋壓縮。最后,我們還提出了一些實(shí)驗(yàn)上可行性的方案,還對(duì)一些實(shí)驗(yàn)上已經(jīng)實(shí)現(xiàn)的參數(shù)做了一些分析,結(jié)果表明我們提出的方案在目前的實(shí)驗(yàn)條件下是可行的。4.通過(guò)連續(xù)驅(qū)動(dòng)氮-空穴(NV)自旋鏈產(chǎn)生壓縮穩(wěn)態(tài)在NV自旋鏈全同地耦合到同一個(gè)光學(xué)模式的系統(tǒng)中,我們提出了通過(guò)連續(xù)光驅(qū)動(dòng)NV自旋來(lái)產(chǎn)生自旋壓縮穩(wěn)態(tài)的方案。在滿足一定頻率匹配的條件下,我們通過(guò)旋波近似得到了系統(tǒng)的有效哈密頓量。該有效哈密頓量表明集體NV自旋暗態(tài)的存在,通過(guò)對(duì)這種暗態(tài)的研究,我們發(fā)現(xiàn)該暗態(tài)就是自旋壓縮態(tài)。這種自旋壓縮態(tài)可以通過(guò)光場(chǎng)的耗散方式來(lái)制備,因此耗散在這里成為了相干的來(lái)源。我們研究了在驅(qū)動(dòng)光不同頻率和強(qiáng)度下自旋壓縮穩(wěn)態(tài)的情況,頻率越大滿足旋波近似的條件越好,自旋壓縮的動(dòng)態(tài)波動(dòng)越小,壓縮也越好,但是其最后趨于穩(wěn)定的壓縮完全取決于驅(qū)動(dòng)光的強(qiáng)度。此外,我們也分析了光子噪聲對(duì)壓縮的影響。最后,我們討論了這種方案在頻率失配下的自旋相變現(xiàn)象。
[Abstract]:Information science is the study of information movement and the application of the method of science, in the past 30 years, the combination of information science and quantum mechanics of quantum information science and the rise has attracted widespread attention. Quantum information science because of some novel properties, such as quantum non clone, linear superposition, entanglement,. In quantum computation, quantum information, quantum measurement shows a very broad application prospect. The parallel processing ability of quantum computer to calculate much faster than classical computers, the password is cracked, quantum search and other aspects show great potential. The use of quantum information quantum state can not be cloned, entanglement characteristics in quantum cryptography, quantum communication and other practical fields and made great progress. The high precision measurement of physical quantity needs to promote the development of quantum metrology, in quantum clock and Research in the field of gravity detection is more and more hot in some areas has exceeded the limit of classical physics, is toward the approaching Heisenberg limit. The information carrier of quantum information science advantages to attract people to seek to achieve the diversiform quantum computer. The quantum computer needs to consider various factors on the physical realization of compromise, in an ion trap, superconducting electronics circuit, linear optics, much progress has been made in cavity quantum electrodynamics and NMR systems. But the actual dissipative quantum physical systems in various, and the number of qubits more dissipation will be more severe. Fortunately some advantages in some aspects of the system is very obvious, so mixed physical system has attracted more and more attention. Optomechanical system in quantum information storage, quantum chaos, aspects of wavelength conversion is big The potential application prospect, especially the mixed physical system formation and coupling of atoms or quantum dots, it is a research hotspot in recent years. The cavity quantum electrodynamics (C-QED) is between atom and optical mode coupling is an important field in the optical cavity. High quality factor, photons and atoms can be multiple interactions, the atoms and the light field is strong coupling, thereby preparing spin squeezed state (SSS) for quantum measurement. In this thesis, we first briefly introduce some basic knowledge of quantum information science, discusses the mechanical system and optical cavity quantum electrodynamics. The optical mechanical system, we study the system of some basic properties and application, analyzes its formation and hybrid physical system coupled quantum dots, input and output, single and two photon phonon laser for cavity quantum electrodynamics. We have prepared device, spin squeezed state are discussed, mainly including the following: in the cavity compression system by detuning to strengthen spin squeezing; in nitrogen vacancy (NV) center system based on geometric phase by spin phonon induced by continuous compression; drive NV spin chain to produce steady compression specific contents into four aspects as follows: 1. cavity optical mechanical system of optical mechanical system is the realization of quantum communication and quantum computing is a very important system, there are abundant physical phenomena and many potential applications. We are in the light mechanical induced transparency, Brillouin scattering induced transparency and non reciprocal optical storage and so on do some simple discussion. Hybrid physical system formed in the coupling of mechanical and quantum dots, we found that the vacuum cavity induced transparency phenomenon from two aspects in detail the coupling strength Analysis. In addition, we will also control the classic transparent phenomenon of light with the vacuum chamber under the induction were compared. Finally, in order to better understand the induced transparency phenomenon, we in general three level atomic system, the non coherent control of electromagnetically induced transparency (EIT) and Autler-Towns splitting (ATS) conversion of the two, and made a distinction between input and output. In the light of the machine, we get the output in the case of a single photon coupled square spectrum, which shows the characteristics of even phonon excitation. On this basis, we further study the input and output of double photon in real space. For phonon laser, we put forward several feasible scheme of.2. cavity detuning strengthen spin squeezing theory we discussed each parameter has been achieved on experimental spin cavity compression scheme on spin compression effect, and the near resonance Compared, we found the detuning can be compressed from a S cavity of 2 / 5 greatly increased to S-2/3, where S is the total number of spins. In addition, we also found that the interaction between the atoms and the cavity is weak and large detuning can strengthen spin atomic ensemble compression. The results show that the spin the compression comes from the laser driven and spin state geometric phase induction, so here the large detuning is very important for the actual physical system, some noise is inevitable. We analyzed the Raman scattering on atomic spin squeezing the influence, the results show that the appropriate detuning can optimize the spin compression. Large detuning laser drive into the optical cavity of the light field effectively reduced, therefore need longer time to achieve optimal compression. In this case, the single spin decoherence had to be taken into account, we find more Strong driving light can reduce this noise effectively on spin squeezing damage. Large detuned laser driver may also be emitting other optical cavity model, we on multi mode light field and atomic ensembles coupling also discussed in detail, find other light field of spin squeezing can be we will be ignored. Finally, parameters can be realized on the experimental scheme, the results show that by adjusting the detuning to enhance the spin squeezing is easy to implement in the present experimental conditions. As a supplement to produce spin compression, based on this scheme we measured by non classical states have done some discussion.3. nitrogen vacancy (NV) phonon geometric phase induced spin compression we propose a mechanical model induced by single geometric phase scheme to realize spin compression based on center system, here NV chain scattering Coupled to a single mechanical oscillator. The geometric phase because of its own property, the initial state is not sensitive to the phonon, this is a very important advantage of experiment. We studied the thermal noise and mechanical quality factor (Q) under different spin squeezing properties, results show that perfect uniaxial compression can be achieved the ratio of thermal noise and mechanical quality factor appropriate. In the physical system, NV chain and some thermal reservoir coupling, the coupling caused by decoherence, resulting in damage to the spin squeezing through our dynamic decoupling pulse sequences to suppress the thermal reservoir effect on spin squeezing, in diamond nitrogen high quality factor - hole spin chain, uniaxial compression spin we can achieve perfect. Finally, we present some experiments on the feasibility of the scheme, the parameters of some experiments has made some Analysis results show that our proposed scheme in the present experimental conditions is feasible by.4. nitrogen hole continuous drive (NV) spin chain produce compression homeostasis in NV spin chain with coupled to the system with an optical model, we put forward by continuous light driven NV to generate spin spin squeezing state scheme. Under certain frequency matching conditions, we obtained by rotating wave approximation effective Hamiltonian. The effective Hamiltonian that collective NV spin dark state, through the study of this dark state, we found that the dark state is spin squeezed state. By way of field dissipation the preparation of this spin squeezed state, thus became the source of coherent dissipation here. We studied in the light of different driving frequency and intensity under steady-state conditions of spin squeezing, the greater the frequency to meet the conditions of the rotating wave approximation The better dynamic fluctuation of spin squeezing decreases, compression is also better, but the final stable compression depends entirely on the driving light intensity. In addition, we also analyzed the influence of photon noise on compression. Finally, we discuss the scheme in the frequency distribution of the spin transition phenomenon.

【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:O413.2

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李秋艷,謝征微,孫威立;海森伯自旋鏈的非線性自旋波進(jìn)動(dòng)(英文)[J];曲阜師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年04期

2 陳萬(wàn)金,孫穎,鄭曉光,王月梅;自旋波頻率移動(dòng)的缺陷效應(yīng)[J];吉林師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年02期

3 吳式樞;自旋波理論最近的發(fā)展[J];物理學(xué)報(bào);1958年03期

4 蔡魯戈;;鐵氧體中自旋波聲波參量耦合激發(fā)理論[J];南京大學(xué)學(xué)報(bào)(自然科學(xué)版);1963年06期

5 翟宏如,劉寄浙;自旋波的傳播特性及其應(yīng)用[J];磁性材料及器件;1975年01期

6 韓世瑩;自旋波線寬的測(cè)量[J];物理學(xué)報(bào);1981年06期

7 閻守勝;稀氣體中發(fā)現(xiàn)自旋波[J];物理;1986年01期

8 楊震;;自旋波器件及其在微波技術(shù)中的應(yīng)用[J];磁性材料及器件;1989年01期

9 云國(guó)宏,,閻俊虎,班士良,梁希俠;耦合有限鐵磁性自旋鏈中的界面自旋波及其存在條件[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);1994年04期

10 閆祖威,云國(guó)宏;對(duì)稱磁性三明治結(jié)構(gòu)中的界面自旋波及其存在條件[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);1995年06期

相關(guān)會(huì)議論文 前4條

1 王選章;;長(zhǎng)波長(zhǎng)自旋波的渦流阻尼效應(yīng)[A];面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(上冊(cè))[C];1999年

2 李巖;王懷玉;任榮東;;橫場(chǎng)下反鐵磁耦合薄膜的自旋波[A];第五屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集Ⅰ[C];2004年

3 邢定鈺;;自旋輸運(yùn)和巨磁電阻——自旋電子學(xué)的物理基礎(chǔ)之一[A];中國(guó)高等科學(xué)技術(shù)中心論文集[C];2004年

4 張鵬翔;劉玉龍;徐孝貞;楊先春;;替代的鐵石榴石單晶的喇曼散射譜[A];第二屆全國(guó)光散射學(xué)術(shù)會(huì)議論文集(下)[C];1983年

相關(guān)重要報(bào)紙文章 前1條

1 記者 劉霞;實(shí)驗(yàn)證實(shí):磁納米接觸可使自旋波“繁殖”[N];科技日?qǐng)?bào);2011年

相關(guān)博士學(xué)位論文 前10條

1 芮俊;冷原子自旋波相干操控及玻色費(fèi)米簡(jiǎn)并混合氣制備[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年

2 張延磊;基于腔量子電動(dòng)力學(xué)的光機(jī)械系統(tǒng)與自旋壓縮研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年

3 金立川;磁性異質(zhì)結(jié)的自旋輸運(yùn)及自旋動(dòng)力學(xué)調(diào)控研究[D];電子科技大學(xué);2014年

4 唐國(guó)棟;鈷基氧化物材料的自旋熵及熱電性能研究[D];南京大學(xué);2011年

5 黃元杰;釩、鈦基尖晶石中的軌道、自旋和晶格的耦合[D];中國(guó)科學(xué)技術(shù)大學(xué);2012年

6 李秋菊;自旋液體材料的低溫?zé)醾鲗?dǎo)[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年

7 李再東;一維自旋鏈及光格子中旋量玻色—愛(ài)因斯坦凝聚的非線性動(dòng)力學(xué)[D];山西大學(xué);2005年

8 明星;自旋自由度對(duì)關(guān)聯(lián)電子體系材料物理性質(zhì)的影響:第一性原理研究[D];吉林大學(xué);2009年

9 雷雨;自旋哈密頓量的微觀解釋—“偽自旋”波函數(shù)方法[D];電子科技大學(xué);2010年

10 侯小娟;雙層鐵磁系統(tǒng)中交換耦合式自旋動(dòng)力學(xué)研究[D];內(nèi)蒙古大學(xué);2011年

相關(guān)碩士學(xué)位論文 前10條

1 趙小兵;單層鐵磁金屬薄膜中的自旋整流效應(yīng)研究[D];蘭州大學(xué);2015年

2 賈寧;低維自旋阻挫體系磁化過(guò)程中的微觀狀態(tài)變化模擬研究[D];東北大學(xué);2014年

3 饒金威;鐵鎳合金薄膜中的自旋駐波研究[D];蘭州大學(xué);2015年

4 李恒甫;橫向磁場(chǎng)中自旋波激發(fā)的微觀機(jī)制[D];華中科技大學(xué);2007年

5 趙新軍;Z型自旋梯子模型的自旋波與比熱[D];新疆大學(xué);2007年

6 彭麗君;一維非均勻磁性體系的自旋波理論研究[D];廣州大學(xué);2008年

7 孔德欣;自旋鏈中的量子信息傳輸[D];中國(guó)科學(xué)技術(shù)大學(xué);2009年

8 彭霞;簡(jiǎn)立方雙層鐵磁性薄膜中自旋波的研究[D];內(nèi)蒙古大學(xué);2010年

9 關(guān)玉琴;體各向異性場(chǎng)和自旋鏈長(zhǎng)度對(duì)界面自旋波存在條件的影響[D];內(nèi)蒙古大學(xué);2004年

10 梁明明;二維反鐵磁海森堡模型的有限溫度自旋波理論[D];煙臺(tái)大學(xué);2010年



本文編號(hào):1664675

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1664675.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e2e35***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日本男人女人干逼视频| 成人区人妻精品一区二区三区| 黄色片国产一区二区三区| 亚洲一级二级三级精品| 日韩欧美一区二区黄色| 亚洲一区二区三区国产| 亚洲中文字幕乱码亚洲| 国产一级精品色特级色国产| 九九九热在线免费视频| 91亚洲国产成人久久| 久久大香蕉精品在线观看 | 熟女少妇一区二区三区蜜桃| 国产又粗又猛又爽色噜噜| 国产女优视频一区二区| 国产丝袜美女诱惑一区二区| 日韩不卡一区二区三区色图| 激情五月天深爱丁香婷婷| 日本东京热加勒比一区二区| 加勒比日本欧美在线观看| 激情丁香激情五月婷婷| 麻豆一区二区三区精品视频| 欧美日韩亚洲精品在线观看| 国产成人午夜av一区二区| 国产精品日韩欧美一区二区| 久久国产青偷人人妻潘金莲| 欧美小黄片在线一级观看| 亚洲乱妇熟女爽的高潮片| 色丁香一区二区黑人巨大| 日韩不卡一区二区在线| 国产精品欧美激情在线观看| 国产又粗又深又猛又爽又黄| 亚洲黄色在线观看免费高清| 亚洲一区二区三在线播放| 国产欧美日韩综合精品二区| 一区二区三区四区亚洲专区| 冬爱琴音一区二区中文字幕 | 亚洲免费观看一区二区三区| 午夜精品福利视频观看| 欧美成人一区二区三区在线| 欧美一级内射一色桃子| 精品国产av一区二区三区不卡蜜|