c-Abl調(diào)控FoxM1穩(wěn)定性及其轉(zhuǎn)錄功能研究
本文關(guān)鍵詞: c-Abl FoxM1 穩(wěn)定性 轉(zhuǎn)錄功能 相互作用 磷酸化 細(xì)胞周期進(jìn)程 基因轉(zhuǎn)錄調(diào)控 出處:《中國人民解放軍軍事醫(yī)學(xué)科學(xué)院》2017年博士論文 論文類型:學(xué)位論文
【摘要】:c-Abl屬于非受體酪氨酸激酶,是Abelson鼠白血病病毒原癌基因v-abl在人類上的同源基因。c-Abl廣泛分布于各組織細(xì)胞當(dāng)中,主要通過結(jié)合并且磷酸化其底物蛋白發(fā)揮功能;c-Abl可參與細(xì)胞增殖、細(xì)胞分化、腫瘤發(fā)生形成、DNA損傷修復(fù)、細(xì)胞骨架生成、細(xì)胞凋亡、細(xì)胞氧化應(yīng)激等生理功能調(diào)控。c-Abl相關(guān)蛋白Arg,與c-Abl在結(jié)構(gòu)上高度同源,發(fā)揮相似的功能。FoxM1是一個(gè)主要存在于增殖分化細(xì)胞中的轉(zhuǎn)錄因子,屬于FOX蛋白家族,它通過調(diào)控基因的轉(zhuǎn)錄表達(dá)參與細(xì)胞增殖、細(xì)胞周期調(diào)控、DNA損傷修復(fù)、腫瘤發(fā)生形成、胚胎發(fā)育及組織器官再生、細(xì)胞凋亡等生理過程。由于兩者密切參與細(xì)胞周期進(jìn)程、腫瘤發(fā)生形成、DNA損傷修復(fù)等,且先前已有報(bào)道,c-Abl能夠調(diào)控p53、NF-κB、C/EBPβ等轉(zhuǎn)錄因子,因此c-Abl對(duì)FoxM1的調(diào)控機(jī)制值得探討。我們前期的研究發(fā)現(xiàn),過表達(dá)的c-Abl能夠結(jié)合并且磷酸化FoxM1,我們通過質(zhì)譜分析(LC-MS/MS)鑒定出5個(gè)主要的磷酸化位點(diǎn)(分別為Y129、Y272、Y317、Y362、Y575)。本研究將對(duì)兩者的相互作用,c-Abl對(duì)FoxM1的磷酸化修飾進(jìn)行更深入的探討,并著重研究c-Abl調(diào)控FoxM1的分子機(jī)制和生理意義,包括泛素化調(diào)控、表達(dá)水平調(diào)控和轉(zhuǎn)錄功能調(diào)控,以及這些調(diào)控作用對(duì)細(xì)胞周期進(jìn)程和細(xì)胞凋亡的影響。在本研究中,我們首先使用免疫共沉淀、免疫印跡和激光共聚焦等技術(shù)手段,證實(shí)內(nèi)源性的c-Abl與FoxM1存在相互作用,相互作用主要定位于細(xì)胞核,且主要發(fā)生于有絲分裂期(M期)。進(jìn)一步,我們證實(shí)內(nèi)源性FoxM1可被酪氨酸磷酸化修飾,并且c-Abl激酶特異性抑制劑STI571能夠顯著抑制FoxM1酪氨酸磷酸化。接下來,我們研究c-Abl對(duì)FoxM1表達(dá)水平的影響,發(fā)現(xiàn)c-abl/arg被敲低或敲除后,FoxM1的表達(dá)水平也出現(xiàn)明顯下調(diào);同時(shí)發(fā)現(xiàn),使用STI571抑制細(xì)胞中的c-Abl激酶活性,也能夠顯著下調(diào)FoxM1的表達(dá)水平,說明FoxM1的表達(dá)依賴于c-Abl激酶活性。我們使用放線菌酮(CHX)處理細(xì)胞,抑制蛋白質(zhì)合成,檢測MEF WT細(xì)胞和MEF(c-abl-/-/arg-/-)細(xì)胞中FoxM1蛋白的半衰期,發(fā)現(xiàn)c-abl/arg敲除后,FoxM1的半衰期顯著縮短,說明c-Abl/Arg能夠增強(qiáng)FoxM1的蛋白穩(wěn)定性。我們猜測,c-Abl對(duì)FoxM1的磷酸化調(diào)控其經(jīng)泛素--蛋白酶體途徑降解,導(dǎo)致其表達(dá)水平受到影響。為此,通過使用STI571和蛋白酶體抑制劑MG132處理U2OS細(xì)胞,檢測FoxM1的泛素化程度和蛋白表達(dá)水平,發(fā)現(xiàn)STI571處理顯著增強(qiáng)其泛素化程度并下調(diào)其表達(dá)水平;而MG132處理能夠使其表達(dá)水平明顯回升,說明c-Abl能夠抑制FoxM1的泛素-蛋白酶體降解途徑,從而提高FoxM1的表達(dá)水平。進(jìn)一步,我們對(duì)FoxM1磷酸化突變體的泛素化修飾和表達(dá)水平進(jìn)行鑒定,發(fā)現(xiàn)與野生型FoxM1相比較,Y272F、Y575F及Y272/575F突變體的泛素化程度顯著增強(qiáng),表達(dá)水平明顯下調(diào),同時(shí)與E3泛素連接酶組件CDH1的結(jié)合作用顯著增強(qiáng),說明c-Abl對(duì)Y272和Y575這兩個(gè)位點(diǎn)的磷酸化,對(duì)FoxM1的穩(wěn)定性有重要作用。同時(shí)發(fā)現(xiàn)Y317F、Y362F突變體的表達(dá)水平明顯升高,并且CDH1與它們的結(jié)合作用顯著減弱,提示c-Abl對(duì)Y317、Y362的磷酸化可能促進(jìn)FoxM1蛋白的降解。FoxM1通過調(diào)節(jié)大量的關(guān)鍵基因參與細(xì)胞周期調(diào)控,這些基因蛋白包括Cyclin B1、Cyclin D1、CDC25A、Plk1、CENP-F、Aurora-A及Aurora-B等。既然c-Abl能夠磷酸化并調(diào)控FoxM1表達(dá)水平,那么對(duì)FoxM1轉(zhuǎn)錄功能的影響也值得探討。我們發(fā)現(xiàn),當(dāng)abl/arg被敲低后,細(xì)胞中的FoxM1及其下游靶基因蛋白Cyclin B1、Cyclin G2、Plk1的表達(dá)水平顯著下調(diào)。同時(shí),使用STI571抑制c-Abl的激酶活性,也能夠顯著下調(diào)Cyclin B1、Plk1和CENP-F等的轉(zhuǎn)錄水平和表達(dá)水平,說明c-Abl對(duì)FoxM1的調(diào)控能夠顯著影響其轉(zhuǎn)錄功能。進(jìn)一步,我們探討c-Abl對(duì)FoxM1的調(diào)控能否影響細(xì)胞周期進(jìn)程。通過使用細(xì)胞周期同步化和流式細(xì)胞儀檢測等技術(shù)方法,我們證實(shí)STI 571通過抑制c-Abl激酶活性,下調(diào)FoxM1的表達(dá)水平,并抑制其轉(zhuǎn)錄功能,進(jìn)而抑制其靶基因蛋白Cyclin B1、Plk1和Aurora-B等的轉(zhuǎn)錄表達(dá),最終導(dǎo)致細(xì)胞周期阻滯。FoxM1的另一個(gè)重要功能是參與腫瘤細(xì)胞的抗凋亡,為此,我們研究c-Abl對(duì)FoxM1的調(diào)控是否影響腫瘤細(xì)胞的凋亡。通過使用STI571和阿霉素(Doxorubicin,能夠誘導(dǎo)腫瘤細(xì)胞凋亡)處理Hela細(xì)胞,檢測凋亡蛋白Cleaved caspase3和Cleaved PARP-1的表達(dá)水平,發(fā)現(xiàn)STI571處理加劇了阿霉素誘導(dǎo)的Hela細(xì)胞凋亡,說明STI571通過抑制c-Abl激酶活性,下調(diào)FoxM1表達(dá)水平,抑制FoxM1的抗凋亡功能。我們的研究證實(shí),c-Abl能夠明顯調(diào)控轉(zhuǎn)錄因子FoxM1,并且根據(jù)文獻(xiàn)報(bào)道,c-Abl也能夠調(diào)控其他的轉(zhuǎn)錄因子如c-Myc、NF-κB、C/EBPβ等。因此我們猜測,c-Abl/Arg能夠參與調(diào)控基因的轉(zhuǎn)錄表達(dá)。為此,我們使用高通量測序(RNA-seq)和生物信息學(xué)分析的方法,對(duì)MCF-7WT及MCF-7 KD(c-abl/arg Knock-Down)細(xì)胞的RNA進(jìn)行轉(zhuǎn)錄組分析。發(fā)現(xiàn)共有1034個(gè)基因的轉(zhuǎn)錄水平受到c-Abl/Arg的顯著調(diào)控,c-abl/arg敲低之后,有635個(gè)基因的轉(zhuǎn)錄水平下調(diào),399個(gè)基因的轉(zhuǎn)錄水平上調(diào),說明c-Abl/Arg能夠調(diào)控基因的轉(zhuǎn)錄水平,并且以正向調(diào)控為主。進(jìn)一步,我們對(duì)受c-Abl/Arg調(diào)控的基因進(jìn)行功能聚類分析,發(fā)現(xiàn)它們的功能參與多種信號(hào)通路和細(xì)胞代謝進(jìn)程,并且這些通路和進(jìn)程大多與已報(bào)道的c-Abl功能密切相關(guān),提示c-Abl不僅在蛋白水平對(duì)相關(guān)功能通路進(jìn)行調(diào)控,并且在基因轉(zhuǎn)錄水平也參與調(diào)控。綜合以上研究結(jié)果,我們證實(shí)細(xì)胞內(nèi)源性的c-Abl能夠結(jié)合并磷酸化修飾FoxM1;c-Abl對(duì)FoxM1的磷酸化作用,抑制其經(jīng)泛素-蛋白酶體途徑降解,增強(qiáng)其穩(wěn)定性,上調(diào)其表達(dá)水平;c-Abl對(duì)FoxM1的調(diào)控影響細(xì)胞周期進(jìn)程和腫瘤細(xì)胞凋亡;c-Abl/Arg能夠參與基因轉(zhuǎn)錄水平調(diào)控。本研究為深入探討c-Abl和FoxM1的功能,特別是探討兩者在細(xì)胞周期進(jìn)程和腫瘤細(xì)胞凋亡等方面的功能,提供重要的理論支撐。
[Abstract]:C-Abl belongs to the non receptor tyrosine kinase, Abelson murine leukemia virus oncogene v-abl in human homologous gene.C-Abl is widely distributed in various tissues and cells, mainly through the combination and phosphorylation of substrate proteins; c-Abl may be involved in cell proliferation, cell differentiation, tumor formation, DNA damage repair, cell skeleton generation. Cell apoptosis, oxidative stress physiological functions such as regulation of.C-Abl related protein Arg, and c-Abl is highly homologous in structure, function similar to.FoxM1 is a transcription factor mainly exists in the proliferation and differentiation of cells, which belongs to the FOX protein family, its expression by transcriptional regulation of genes involved in cell proliferation, cell cycle regulation, DNA damage repair, tumor formation, embryonic development and tissue regeneration, apoptosis and other physiological processes. Because the two are closely involved in the process of cell cycle, tumor The formation and repair of DNA damage, and have been reported previously, c-Abl can regulate p53, NF- kappa B, C/EBP beta and other transcription factors, therefore the regulation mechanism of c-Abl on FoxM1 is worth exploring. Our previous study showed that overexpression of c-Abl can bind and phosphorylation of FoxM1, we through mass spectrum analysis (LC-MS/MS) identified 5 major phosphorylation sites (Y129, Y272, Y317, Y362, Y575). The interaction of the two, phosphorylation of FoxM1 c-Abl to further discuss the molecular mechanism and physiological significance, and focuses on the regulation of FoxM1 c-Abl, including ubiquitin regulation, expression regulation the function and transcriptional regulation, and the influence of these effects on cell cycle progression and cell apoptosis. In this study, we used immunoprecipitation, immunoblotting and confocal technique, c-Abl and FoxM1 confirmed that endogenous. In the interaction, the interaction was mainly located in the nucleus, and occurs mainly in the mitotic phase (M phase). Further, we demonstrate that endogenous FoxM1 may be tyrosine phosphorylation, and c-Abl kinase specific inhibitor STI571 can significantly inhibit the tyrosine phosphorylation of FoxM1. Next, we study the effects of c-Abl on the expression of FoxM1. C-abl/arg was found to knockdown or knockout, expression of FoxM1 was significantly reduced; at the same time, the use of STI571 inhibition of c-Abl kinase activity in cells, can also down-regulation of FoxM1, indicating c-Abl dependent kinase activity and the expression of FoxM1. We use the cycloheximide treated cells, inhibition (CHX) protein synthesis, detection of MEF WT cells and MEF (c-abl-/-/arg-/-) FoxM1 protein half-life, found that c-abl/arg knockout, the half-life of FoxM1 was significantly reduced, indicating that c-Abl/Arg can enhance The stability of FoxM1 protein. We speculate that phosphorylation of FoxM1 c-Abl by the ubiquitin - proteasome pathway leads to degradation, its expression level is affected. Therefore, by using STI571 and proteasome inhibitor MG132 treated U2OS cells, detect the ubiquitination of FoxM1 and protein expression level, found that STI571 treatment significantly enhanced its ubiquitin the degree and down-regulation of its expression level; while MG132 treatment can make the expression level increase, indicating that c-Abl can inhibit FoxM1 degradation by the ubiquitin proteasome pathway, so as to improve the expression level of FoxM1. Further, we on the phosphorylation of FoxM1 mutant ubiquitination and identify the expression level of FoxM1, compared with the wild type Y272F, Y575F and Y272/575F, the degree of ubiquitination of mutant significantly enhanced expression levels were significantly reduced, at the same time node cooperation with E3 ubiquitin ligase CDH1 components with significant C-Abl enhanced on Y272 and Y575 of the two phosphorylation plays an important role on the stability of FoxM1. At the same time that Y317F, the expression level of Y362F mutant was significantly increased, and the combination of CDH1 and their reduced significantly, suggesting that c-Abl of Y317, the phosphorylation of Y362 could promote the degradation of.FoxM1 protein by FoxM1 a large number of regulating key genes involved in cell cycle regulation, these proteins including Cyclin B1, Cyclin D1, CDC25A, Plk1, CENP-F, Aurora-A and Aurora-B. Since c-Abl can phosphorylate and regulate the expression level of FoxM1, then the influence on the transcriptional function of FoxM1 is also worth exploring. We found that, when knockdown of abl/arg cells the FoxM1 and its downstream target gene Cyclin B1, Cyclin G2, the expression level of Plk1 is significantly decreased. At the same time, the use of STI571 to inhibit c-Abl kinase activity, can significantly reduce the Cyclin of B1, Plk1 and CENP-F etc. The transcription and expression level, c-Abl regulation of FoxM1 can significantly affect the transcriptional function. Further, we investigate the c-Abl regulation of FoxM1 can influence the cell cycle progression. Through the use of cell cycle synchronization and flow cytometry technique, we confirmed that STI 571 through inhibition of c-Abl kinase activity and down-regulation of expression level FoxM1, and inhibit its transcriptional function, thereby inhibiting its target gene Cyclin B1 protein, expression of Plk1 and Aurora-B, resulting in another important function of.FoxM1 cell cycle arrest is involved in tumor cell apoptosis, therefore, we study the c-Abl regulation of FoxM1 will affect the apoptosis of tumor cells through the use of. (Doxorubicin, STI571 and adriamycin could induce the apoptosis of tumor cells) treated Hela cells, apoptosis protein Cleaved Caspase3 and Cleaved PARP-1 expression was found. STI571 treatment increased Hela cell apoptosis induced by doxorubicin, STI571 through inhibition of c-Abl kinase activity, decrease the expression level of FoxM1 and inhibition of FoxM1 anti apoptotic function. Our study confirmed that c-Abl can significantly regulate the transcription factor FoxM1, and according to the literature, c-Abl can regulate the transcription of other factors such as c-Myc, NF- K B. C/EBP beta. So we speculated that the expression of c-Abl/Arg can participate in the regulation of genes. Therefore, we used high-throughput sequencing (RNA-seq) analysis and bioinformatics, MCF-7WT and MCF-7 (KD c-abl/arg Knock-Down) RNA cell transcriptome analysis. There were significant transcriptional regulation of 1034 genes by c-Abl/Arg, c-abl/arg knockdown, transcription levels of 635 genes downregulated, 399 genes transcription level increased, indicating that c-Abl/Arg can control the gene transcription level, and In the positive control. Further, we performed functional clustering analysis of genes regulated by c-Abl/Arg, found that their functions involved in various signaling pathways and cellular metabolic processes, and most of these pathways and processes with the reported c-Abl function closely related, suggesting that c-Abl not only at the protein level of related functional regulatory pathways, and also participate in the level of gene transcription regulation. Based on the above results, we demonstrate that endogenous c-Abl binding and phosphorylation of FoxM1; phosphorylation of c-Abl on FoxM1, the inhibition by ubiquitin proteasome degradation pathway, enhance its stability, increase its expression level; c-Abl regulation effect on FoxM1 cell cycle progression and the apoptosis of tumor cells; c-Abl/Arg can participate in gene transcription regulation. This study to further explore the function of FoxM1 and c-Abl, especially on the cell cycle It provides important theoretical support for the function of stage and tumor cell apoptosis.
【學(xué)位授予單位】:中國人民解放軍軍事醫(yī)學(xué)科學(xué)院
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:Q78
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龍中奇;細(xì)胞凋亡的研究現(xiàn)狀[J];達(dá)縣師范高等專科學(xué)校學(xué)報(bào);2000年02期
2 任智;細(xì)胞凋亡的研究現(xiàn)狀[J];四川師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2000年04期
3 羅琦,王建華,王遠(yuǎn)亮,潘君;金屬離子在細(xì)胞凋亡中的調(diào)控作用[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年08期
4 方曉陽,盛偉;細(xì)胞凋亡的概念來源及其研究進(jìn)展[J];生命的化學(xué);2003年02期
5 田輝凱,姚小皓,李學(xué)軍;非細(xì)胞體系在細(xì)胞凋亡中的應(yīng)用[J];生命的化學(xué);2003年02期
6 葉玲玲,陳昭烈;動(dòng)物細(xì)胞大規(guī)模培養(yǎng)過程中細(xì)胞凋亡的檢測與控制[J];中國生物工程雜志;2003年08期
7 龍泉,邢婉麗;Jurkat細(xì)胞凋亡的實(shí)時(shí)電旋轉(zhuǎn)芯片檢測[J];生物物理學(xué)報(bào);2005年01期
8 楊竹林,伍漢文;細(xì)胞凋亡調(diào)控因素有關(guān)基因的研究[J];國外醫(yī)學(xué)(生理、病理科學(xué)與臨床分冊(cè));1997年02期
9 劉恩梅,楊錫強(qiáng);細(xì)胞凋亡及其影響因素[J];重慶醫(yī)學(xué);1998年01期
10 金梅林,陳煥春;細(xì)胞凋亡及基因調(diào)控在獸醫(yī)病毒學(xué)領(lǐng)域研究動(dòng)態(tài)[J];動(dòng)物醫(yī)學(xué)進(jìn)展;2000年04期
相關(guān)會(huì)議論文 前10條
1 陳穎麗;李前忠;;不同亞細(xì)胞位置的細(xì)胞凋亡蛋白質(zhì)的結(jié)構(gòu)特性分析[A];第十一次中國生物物理學(xué)術(shù)大會(huì)暨第九屆全國會(huì)員代表大會(huì)摘要集[C];2009年
2 孫英麗;趙允;朱山;翟中和;;植物細(xì)胞凋亡及其機(jī)理的研究[A];中國細(xì)胞生物學(xué)學(xué)會(huì)第七次會(huì)議論文摘要匯編[C];1999年
3 劉二龍;袁慧;;鋅與細(xì)胞凋亡[A];2003全國家畜內(nèi)科學(xué)學(xué)術(shù)研討會(huì)論文專輯[C];2003年
4 邱潔;高海青;;鋅在細(xì)胞凋亡中的作用研究進(jìn)展[A];山東省微量元素科學(xué)研究會(huì)第三屆學(xué)術(shù)研討會(huì)論文匯編[C];2006年
5 俞雅萍;;細(xì)胞凋亡的機(jī)制及途徑和影響因素[A];華東六省一市生物化學(xué)與分子生物學(xué)學(xué)會(huì)2006年學(xué)術(shù)交流會(huì)論文集[C];2006年
6 于青;袁偉杰;姚建;;晚期糖基化終末產(chǎn)物引起足細(xì)胞凋亡的機(jī)制[A];2007年浙滬兩地腎臟病學(xué)術(shù)年會(huì)資料匯編[C];2007年
7 季宇彬;尹立;汲晨鋒;;調(diào)控細(xì)胞凋亡的線粒體因素[A];腫瘤病因?qū)W研究與中西醫(yī)結(jié)合腫瘤綜合診療交流研討會(huì)論文集[C];2009年
8 吳經(jīng)緯;湯長發(fā);;運(yùn)動(dòng)中細(xì)胞凋亡的線粒體變化特征[A];湖南省生理科學(xué)會(huì)2006年度學(xué)術(shù)年會(huì)論文摘要匯編[C];2007年
9 蒲小平;李長齡;屠鵬飛;宋志宏;;中藥肉叢蓉成分抗神經(jīng)細(xì)胞凋亡的實(shí)驗(yàn)研究[A];第七屆全國生化藥理學(xué)術(shù)討論會(huì)論文摘要集[C];2000年
10 江鍵;宋誠榮;崔黎麗;方影;王小平;;靜電場對(duì)細(xì)胞凋亡作用的初步探討[A];中國物理學(xué)會(huì)第九屆靜電學(xué)術(shù)年會(huì)論文集[C];2000年
相關(guān)重要報(bào)紙文章 前10條
1 商?hào)|;“細(xì)胞凋亡”與臨床醫(yī)學(xué)[N];中國醫(yī)藥報(bào);2001年
2 張志軍;細(xì)胞凋亡與中醫(yī)藥[N];中國醫(yī)藥報(bào);2002年
3 ;“細(xì)胞凋亡療法”正逐步成為治療癌癥的新途徑[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2002年
4 記者張建松;治療癌癥新途徑:細(xì)胞凋亡療法[N];科技日?qǐng)?bào);2002年
5 李明輝;“細(xì)胞凋亡”治癌癥[N];醫(yī)藥導(dǎo)報(bào);2002年
6 洪敏;細(xì)胞凋亡研究引人關(guān)注[N];中國醫(yī)藥報(bào);2008年
7 陶春祥;細(xì)胞凋亡對(duì)心臟疾病的影響[N];中國醫(yī)藥報(bào);2003年
8 本報(bào)實(shí)習(xí)記者 梁媛媛;薛定:發(fā)現(xiàn)癌癥“開關(guān)”[N];北京科技報(bào);2010年
9 高書明;誘導(dǎo)癌細(xì)胞凋亡[N];中國醫(yī)藥報(bào);2004年
10 勇匯;中藥誘導(dǎo)癌細(xì)胞凋亡研究進(jìn)展[N];中國醫(yī)藥報(bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 董欽才;c-Abl調(diào)控FoxM1穩(wěn)定性及其轉(zhuǎn)錄功能研究[D];中國人民解放軍軍事醫(yī)學(xué)科學(xué)院;2017年
2 楊利;系列多氮類化合物的抗腫瘤活性研究[D];武漢大學(xué);2012年
3 張浩;從分子、細(xì)胞和動(dòng)物水平研究鉛誘發(fā)氧化損傷及細(xì)胞凋亡的效應(yīng)與機(jī)理[D];山東大學(xué);2015年
4 何欣怡;家蠶微孢子蟲(Nosema bombycis)抑制家蠶BmN細(xì)胞凋亡的功能研究[D];浙江大學(xué);2015年
5 馮全服;從線粒體途徑研究川芎嗪誘導(dǎo)HepG2細(xì)胞凋亡效應(yīng)機(jī)制[D];南京中醫(yī)藥大學(xué);2015年
6 張曉倩;高糖誘導(dǎo)Bim蛋白高表達(dá)而促腎近曲小管上皮細(xì)胞凋亡的機(jī)制探討[D];山東大學(xué);2015年
7 孫健瑋;PTEN基因負(fù)調(diào)控Raf1磷酸化的作用及其對(duì)PC3細(xì)胞凋亡的影響[D];昆明醫(yī)科大學(xué);2014年
8 徐林艷;腫瘤細(xì)胞凋亡過程中TNFRSF10B和CFLAR調(diào)控機(jī)制研究[D];山東大學(xué);2015年
9 樊慶端;生物調(diào)控網(wǎng)絡(luò)的建模與動(dòng)力學(xué)行為研究[D];上海大學(xué);2015年
10 王德選;WNK_3對(duì)鈉氯協(xié)調(diào)轉(zhuǎn)運(yùn)子的調(diào)節(jié)及在胚腎細(xì)胞凋亡中的保護(hù)作用[D];南方醫(yī)科大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 曹璐璐;2,2’,4,4’-四溴聯(lián)苯醚(BDE-47)對(duì)人胚腎細(xì)胞(HEK293)的毒理效應(yīng)及作用機(jī)制研究[D];中國科學(xué)院煙臺(tái)海岸帶研究所;2015年
2 張薇;蒜頭果蛋白誘導(dǎo)HepG-2細(xì)胞凋亡的研究[D];云南民族大學(xué);2015年
3 唐建國;視黃醇X受體出核抑制對(duì)神經(jīng)元細(xì)胞凋亡的影響[D];福建醫(yī)科大學(xué);2015年
4 安璐;3-氯-1,2-丙二醇細(xì)胞毒性及其誘導(dǎo)HEK293細(xì)胞凋亡途徑探究[D];江南大學(xué);2015年
5 楊翔;Procaspase-8的異常表達(dá)抑制TRAIL誘導(dǎo)腫瘤細(xì)胞凋亡[D];昆明理工大學(xué);2015年
6 張昌明;I3C通過調(diào)控p53泛素化對(duì)喉癌Hep-2細(xì)胞凋亡的影響[D];延邊大學(xué);2015年
7 彭涵;共軛亞油酸對(duì)仔豬脂肪細(xì)胞凋亡的影響[D];西南大學(xué);2015年
8 李立輝;ΔFosB通過MMP-9調(diào)控山羊乳腺上皮細(xì)胞凋亡的分子機(jī)制[D];西北農(nóng)林科技大學(xué);2015年
9 楊鑫鋮;Hedgehog信號(hào)通路在大鼠急性胰腺炎腺泡細(xì)胞凋亡中的作用[D];河北醫(yī)科大學(xué);2015年
10 賈瓊瓊;MicroRNA-214對(duì)H_2O_2損傷L6骨骼肌成肌細(xì)胞增殖和凋亡的影響[D];河北醫(yī)科大學(xué);2015年
,本文編號(hào):1472066
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1472066.html