卟啉基分子器件的電磁輸運(yùn)性質(zhì)研究
本文關(guān)鍵詞: 第一性原理 密度泛函理論 電磁輸運(yùn)特性 分子-電極接觸構(gòu)型 負(fù)微分電阻效應(yīng) ATK軟件 出處:《蘇州大學(xué)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:分子電子學(xué)起源于諾貝爾物理學(xué)獎(jiǎng)獲得者費(fèi)恩曼(R.P.Feynman)提出的“從單個(gè)分子甚至原子進(jìn)行組裝”的偉大設(shè)想。1974年,Avriam和Ratner設(shè)計(jì)了具有非對(duì)稱結(jié)構(gòu)的分子,研究了給體-受體-分子橋的整流特性,成功預(yù)示了該分子呈現(xiàn)出分子整流器的功能。隨著實(shí)驗(yàn)技術(shù)的完善,人們利用掃描隧道顯微鏡技術(shù),力學(xué)可控劈裂法,納米電極技術(shù)等方法制備出各種具有特殊功能的分子器件,包括分子導(dǎo)線,分子開關(guān),分子整流器,分子存儲(chǔ)器等。如何構(gòu)筑、表征穩(wěn)定的分子結(jié)是分子器件實(shí)驗(yàn)研究中面臨的最困難的問題,尤其是分子器件的特性對(duì)于分子與電極之間的界面非常靈敏,導(dǎo)致了不同研究小組的一些測(cè)量結(jié)果相差較多,甚至出現(xiàn)互相矛盾。而在實(shí)驗(yàn)上要實(shí)現(xiàn)分子與電極之間的精確控制是非常困難的。因此,計(jì)算模擬方法在分子器件研究中起著越來(lái)越重要的作用。隨著計(jì)算機(jī)功能的急速增強(qiáng),分子電子學(xué)的理論模擬計(jì)算對(duì)分子材料的開發(fā)和分子器件的設(shè)計(jì)逐漸成為研究熱點(diǎn)。近年來(lái),由于卟啉分子高共軛的平面結(jié)構(gòu),優(yōu)異的化學(xué)穩(wěn)定性以及獨(dú)特的光電特性,可與多種金屬離子形成穩(wěn)定的金屬配合物等性質(zhì)受到國(guó)內(nèi)外各研究小組的普遍關(guān)注。由于分子的電磁輸運(yùn)特性與金屬電極和有機(jī)分子接觸面的特性密切相關(guān),本文利用非平衡格林函數(shù)與密度泛函理論相結(jié)合的第一性原理方法,應(yīng)用Atomistix Tool Kit(ATK)計(jì)算軟件,詳細(xì)研究了苯環(huán)-卟啉-苯環(huán)分子(BPB)與電極間的耦合方式,中心配位金屬,功能性基團(tuán)替代等因素對(duì)卟啉類分子器件輸運(yùn)性質(zhì)的影響,得到了一些有意義的結(jié)論。主要研究?jī)?nèi)容如下:(1)在無(wú)限大平面金電極基礎(chǔ)上構(gòu)造尖端金字塔型電極結(jié)構(gòu)吸附BPB分子,并逐漸減少電極前端的Au原子個(gè)數(shù),破壞金字塔尖端電極接觸方式,系統(tǒng)研究了分子與電極的接觸構(gòu)型對(duì)BPB分子結(jié)電輸運(yùn)特性的影響。分子電極接觸構(gòu)型的不同導(dǎo)致了電流-電壓(I-V)特性曲線呈現(xiàn)出明顯不同的結(jié)果,特別是兩端金字塔電極的硫-金(S-Au)頂位接觸的BPB分子結(jié),在外加電壓-0.3V時(shí)出現(xiàn)了明顯的負(fù)微分電阻(NDR)現(xiàn)象。隨著尖端接觸對(duì)稱性被逐漸打破,在兩端都是大平面電極接觸構(gòu)型的BPB分子結(jié)中沒有觀察到低壓負(fù)微分電阻現(xiàn)象。一側(cè)是金字塔電極接觸,另一側(cè)是平面電極接觸的不對(duì)稱構(gòu)型的BPB分子結(jié),不僅具有低壓負(fù)微分電阻效應(yīng),還同時(shí)具有較強(qiáng)的整流特性。進(jìn)一步通過(guò)透射譜和分子投影自洽哈密頓(MPSH)進(jìn)行分析,表明這些傳輸特性與金電極的尖端接觸構(gòu)型密切相關(guān)。分子與金字塔構(gòu)型的電極接觸時(shí),尖端金原子與BPB分子耦合作用引起了主導(dǎo)輸運(yùn)的分子前沿軌道HOMO能級(jí),使得費(fèi)米面附近的透射峰隨電壓發(fā)生變化,導(dǎo)致了低壓負(fù)微分電阻效應(yīng)。(2)系統(tǒng)研究了BPB分子與不同金屬配位的復(fù)合物(M-BPB,M=Zn,Ni,Cu,Mg,Co,Ca)的電輸運(yùn)性質(zhì),我們選擇直徑約4.5埃的金(111)納米線作為電極材料,構(gòu)造尖端金字塔型電極結(jié)構(gòu),研究了在不同對(duì)稱性、三種鍵合方式(頂式、橋式、空式)的M-BPB分子結(jié)的電輸運(yùn)特性。首先將苯環(huán)-鈷卟啉-苯環(huán)分子(Co-BPB)與金納米線電極構(gòu)成不同S-Au鍵合方式的分子結(jié),研究鍵合方式對(duì)Co-BPB在寬電壓范圍內(nèi)電輸運(yùn)性質(zhì)的影響,計(jì)算結(jié)果發(fā)現(xiàn)該分子結(jié)在不同電壓范圍出現(xiàn)了多重NDR現(xiàn)象。低壓區(qū)域(0-1.0V),Co-BPB分子與金電極頂式鍵合構(gòu)型具有NDR效應(yīng),中間電壓區(qū)域(1.0-2.0V),出現(xiàn)了兩種不同特性的NDR現(xiàn)象,高壓區(qū)域(2.0-3.0V),所有S-Au鍵合構(gòu)型在外加偏壓為2.8V左右都具有負(fù)微分電阻效應(yīng)。這些結(jié)果表明寬電壓范圍內(nèi),低壓區(qū)域與高壓區(qū)域的負(fù)微分電阻效應(yīng)機(jī)制并不相同。我們的分析表明分子與電極通過(guò)S-Au頂式鍵合時(shí),尖端金原子與硫原子的耦合能級(jí)中,近費(fèi)米面的能級(jí)對(duì)低壓區(qū)電輸運(yùn)起主要作用,隨著電壓逐漸增加,離費(fèi)米面較遠(yuǎn)的Co-BPB分子的本征能級(jí)逐漸對(duì)輸運(yùn)起主導(dǎo)作用,這兩種機(jī)制的結(jié)合和競(jìng)爭(zhēng)導(dǎo)致了中間電壓區(qū)域的NDR效應(yīng)。中心配位金屬對(duì)M-BPB電輸運(yùn)特性的影響結(jié)果表明,Ca-BPB與Co-BPB由于相似的擴(kuò)展的分子軌道空間分布,具有良好的電輸運(yùn)特性。而Cu-BPB和Ni-BPB電子態(tài)的空間分布呈現(xiàn)出很強(qiáng)的局域性,導(dǎo)致費(fèi)米面附近的透射率很小,具有較弱的電輸運(yùn)特性。(3)進(jìn)一步研究了S-Au三種鍵合構(gòu)型Co-BPB分子結(jié)自旋極化輸運(yùn)性質(zhì),結(jié)果發(fā)現(xiàn)Co-BPB分子與金電極頂式鍵合的I-V曲線特性顯示出不同程度的自旋分立的現(xiàn)象,尤其是在低壓區(qū)自旋分立更為明顯。在Co-BPB分子中增加功能性基團(tuán)氨基(NH2)和硝基(NO2),研究基團(tuán)替代對(duì)Co-BPB分子結(jié)的自旋極化輸運(yùn)性質(zhì)的影響,結(jié)果表明基團(tuán)的種類以及替代位置都可以有效調(diào)控Co-BPB分子結(jié)的自旋輸運(yùn)性質(zhì)。中間卟啉環(huán)的H原子被NH2替代可以獲得更大的自旋向下電流,側(cè)苯環(huán)的H原子被NH2替代可以獲得反向整流效應(yīng)。相同位置采用NH2替代,比NO2具有更強(qiáng)的自旋分立和低壓負(fù)微分電阻效應(yīng)。計(jì)算結(jié)果表明自旋極化的轉(zhuǎn)移電荷導(dǎo)致了基團(tuán)替代的Co-BPB分子自旋向下軌道的HOMO能級(jí)向費(fèi)米面移動(dòng),增強(qiáng)了分子與電極間的耦合作用,獲得了更好的自旋輸運(yùn)特性。本文的研究結(jié)果為新型多功能分子器件的設(shè)計(jì)提供了理論參考。
[Abstract]:Molecular electronics origin Feinman who won the Nobel prize in Physics (R.P.Feynman) to put forward "from a single molecular or even atomic assembly" is a great idea in.1974, Avriam and Ratner designed molecules with the asymmetric structure, the donor acceptor molecular bridge rectifier characteristics, indicates the molecule showing a successful molecular rectifier function. With the improvement of experimental technique, people use the technology of scanning tunneling microscope, splitting method of controllable mechanical, nano electrode technology prepared a variety of molecular devices with special functions, including molecular wire, molecular switch, molecular rectifiers, molecular memory. How to build, is the most stable characterization of molecular junctions the difficult problems of experimental research in molecular devices, especially the properties of molecular devices between the molecule and the electrode interface is very sensitive, leading to different research group Some measurement results differ more, even contradictory. But in the experiment to realize accurate control between molecule and electrode is very difficult. Therefore, numerical simulation method plays a more and more important role in the study of molecular devices. With the function of computer rapid enhancement, molecular electronics simulation development theory and molecular devices of molecular materials has become a research hotspot. In recent years, due to the planar structure of porphyrin molecules highly conjugated, excellent chemical stability and unique optoelectronic properties, with a variety of metal ions to form stable physical properties such as metal complexes has received widespread attention at home and abroad of the research team. Because the molecules of electromagnetic transmission transport properties and the metal electrode and the organic molecules contact surface is closely related to the characteristics, this paper using the nonequilibrium Green function and density functional theory combined with the first The principle of method, application of Atomistix Tool Kit (ATK) software, a detailed study of the phenyl porphyrin - benzene molecule (BPB) and coupling between the electrodes, central metal, alternative functional groups and other factors investigated transport properties of porphyrin molecular devices, obtained some valuable conclusions. The research contents are as follows: (1) to construct Pyramid tip electrode structure with the adsorption of BPB on gold electrode based on the infinite plane, and gradually reduce the number of Au atoms at the front end of the electrode contact, failure mode of Pyramid tip electrode, and the electrode contact configuration of molecular transport properties of BPB molecule junction was studied. The contact electrode configuration of molecules has different current voltage (I-V) curves show different results, especially the ends of Pyramid sulfur gold electrode (S-Au) molecular BPB top contact node, when the applied voltage in -0.3V The apparent negative differential resistance (NDR) phenomenon. With the tip contact symmetry is broken gradually, in both observation low negative differential resistance phenomenon to the BPB junction plane electrode in the contact structure. One side is Pyramid electrode contact, the other side is a BPB molecule asymmetric configuration of planar contact electrode. Not only has the advantages of low pressure, negative differential resistance, but also has the characteristics of strong rectification. Further through the transmission spectrum and molecular projected self consistent Hamiltonian (MPSH) analysis showed that the tip contact configurations of these transmission characteristics with the gold electrode is closely related to the molecular configuration of the electrode contact with Pyramid, the tip of gold atoms and BPB molecules coupling by the frontier molecular orbital energy level of HOMO leading transport, the transmission peak near the Fermi level changes with voltage, low voltage leads to negative differential resistance. (2) of B PB molecules with different metal coordination complexes (M-BPB, M=Zn, Ni, Cu, Mg, Co, Ca) of the electrical transport properties, we select the diameter of about 4.5 Au (111) nanowires as electrode materials, structure of Pyramid type tip electrode structure is studied under different symmetry, three bond (top, bridge, empty type) of the electronic transport properties of molecular junctions. Firstly, M-BPB benzene COBALTPORPHYRIN - benzene molecular (Co-BPB) of different molecular junction S-Au bond with the Gold Nanowire Electrode on bonding effect of Co-BPB in the wide range of voltage electrical transport properties the results show that the molecular structure in different voltage range appeared multiple NDR phenomenon. The low pressure region (0-1.0V), Co-BPB and gold electrode top bonding configuration with NDR effect, the middle voltage region (1.0-2.0V), there are two different characteristics of the NDR phenomenon, the high-pressure region (2.0-3.0V), all the S-Au key in the configuration The bias is about 2.8V with negative differential resistance. These results indicate that the wide range of voltage, the negative differential resistance mechanism of low pressure region and high pressure regions are not the same. Our analysis shows that the molecule and the electrode through the S-Au top type of bonding, coupling level of gold atoms and sulfur atoms tip in near Fermi level in the area of low pressure electric transport plays a major role, as the voltage increases, the energy levels of Co-BPB molecule is far away from the Fermi gradually on transport plays a dominant role in binding and competition of these two mechanisms lead to the effect of NDR middle voltage region. Central metal of M-BPB electrical transport properties the results show that Ca-BPB and Co-BPB due to the distribution of molecular orbital space similar to the expansion, has good electrical transport properties. Cu-BPB and Ni-BPB electronic states localized spatial distribution showed a very strong, resulting in the Fermi level Near the transmittance is very small, the electron transport properties is weak. (3) further study of S-Au three kinds of bonding configuration of Co-BPB molecule junction spin polarized transport properties, the results showed that Co-BPB molecules with the gold electrode top I-V curve bonding showed different degrees of separation of spin phenomenon, especially in low spin separation is more obvious. The increase of amino functional groups in Co-BPB molecule (NH2) and (NO2), nitro substituted on transport properties of spin polarized Co-BPB molecular junctions, results show that the group type and position can replace transport properties to effectively control the spin Co-BPB molecular junctions. H atom intermediate porphyrin ring substituted by NH2 can obtain more spin down current, H atom side benzene ring substituted by NH2 can reverse rectifier effect. NH2 is adopted to replace the same position, spin is stronger than the NO2 and low voltage Negative differential resistance effect. The calculation results show that the charge transfer of spin polarization leads to the HOMO level of Co-BPB molecular spin substituted downward track moves to the Fermi level, enhance the coupling between the molecule and the electrode, obtained better spin transport properties. The research results of this paper provide a theoretical reference for the design of new multi function molecular devices.
【學(xué)位授予單位】:蘇州大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O561
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊立英;;分子器件 數(shù)據(jù)聚焦分析[J];科學(xué)觀察;2006年06期
2 王利光;陳蕾;李勇;郭良;田上勝規(guī);XZ田捷;;電極耦接變化對(duì)分子器件電子輸運(yùn)特性影響的研究[J];人工晶體學(xué)報(bào);2008年01期
3 李懷志;藺麗麗;王傳奎;;溶劑環(huán)境對(duì)分子器件電學(xué)性質(zhì)的影響[J];山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期
4 張毓敏;;淺談分子器件的研究發(fā)展[J];科教文匯(下旬刊);2011年12期
5 劉云圻,朱道本;分子器件[J];物理;1990年05期
6 李榮金;李洪祥;湯慶鑫;胡文平;;分子器件的研究進(jìn)展[J];物理;2006年12期
7 劉瑞金;關(guān)于分子器件的研究[J];科學(xué)中國(guó)人;2005年09期
8 李英德;馬竹青;劉玉蘭;王傳奎;;氫鍵對(duì)分子器件電學(xué)特性的影響[J];分子科學(xué)學(xué)報(bào);2010年05期
9 成玨飛;;基于分子器件的研究[J];科技信息;2012年30期
10 張振華;楊中芹;袁劍輝;邱明;;有機(jī)分子器件輸運(yùn)性質(zhì)的接觸距離效應(yīng)[J];科學(xué)通報(bào);2007年10期
相關(guān)會(huì)議論文 前7條
1 侯士敏;錢則侃;;分子器件電路的第一性原理理論研究[A];中國(guó)真空學(xué)會(huì)2008年學(xué)術(shù)年會(huì)論文摘要集[C];2008年
2 方應(yīng)翠;趙建華;高洪營(yíng);;硅表面氫原子層脫耦合研究[A];TFC’09全國(guó)薄膜技術(shù)學(xué)術(shù)研討會(huì)論文摘要集[C];2009年
3 寧?kù)o;侯士敏;;共軛π鍵連續(xù)性對(duì)分子器件電學(xué)特性的影響[A];中國(guó)真空學(xué)會(huì)2006年學(xué)術(shù)會(huì)議論文摘要集[C];2006年
4 鄒斌;李宗良;馬勇;閆循旺;王傳奎;;分子構(gòu)型對(duì)分子器件伏-安特性的影響[A];第十三屆全國(guó)原子與分子物理學(xué)術(shù)會(huì)議論文集[C];2006年
5 沈興海;;環(huán)糊精納米管和超分子器件的構(gòu)筑及物化性質(zhì)研究[A];中國(guó)化學(xué)會(huì)第二十五屆學(xué)術(shù)年會(huì)論文摘要集(上冊(cè))[C];2006年
6 王樂勇;John A.Gladysz;;具有偶極距的銠分子陀螺儀的合成[A];中國(guó)化學(xué)會(huì)全國(guó)第十三屆大環(huán)化學(xué)暨第五屆超分子化學(xué)學(xué)術(shù)討論會(huì)論文選集[C];2006年
7 唐瑜;柳亮亮;于明匯;劉偉生;;層狀稀土氫氧化物插層組裝及白光薄膜分子器件研究[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第05分會(huì):無(wú)機(jī)化學(xué)[C];2014年
相關(guān)重要報(bào)紙文章 前1條
1 ;美國(guó)發(fā)力分子器件[N];中國(guó)高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2004年
相關(guān)博士學(xué)位論文 前10條
1 成玨飛;卟啉基分子器件的電磁輸運(yùn)性質(zhì)研究[D];蘇州大學(xué);2016年
2 范志強(qiáng);分子器件負(fù)微分電阻效應(yīng)和整流效應(yīng)的理論研究[D];湖南大學(xué);2010年
3 藺麗麗;分子器件彈性和非彈性電子輸運(yùn)性質(zhì)的理論研究[D];山東師范大學(xué);2011年
4 周永西;分子器件中量子輸運(yùn)特性的第一性原理研究[D];復(fù)旦大學(xué);2007年
5 蔣鋒;有機(jī)高分子摻雜及有機(jī)分子器件輸運(yùn)問題的理論研究[D];復(fù)旦大學(xué);2006年
6 李明君;苯基D/A分子器件電子輸運(yùn)性質(zhì)的理論研究[D];中南大學(xué);2013年
7 鄒斌;分子器件非彈性電子隧穿譜的理論研究[D];山東師范大學(xué);2008年
8 張小姣;低維碳基分子器件的電荷輸運(yùn)機(jī)理研究及計(jì)算設(shè)計(jì)[D];湖南大學(xué);2012年
9 孫玉希;安替比林類有機(jī)光電轉(zhuǎn)換分子器件的結(jié)構(gòu)設(shè)計(jì)與驗(yàn)證[D];南京理工大學(xué);2009年
10 李英德;單分子電子器件的理論研究[D];山東師范大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 周成;幾種3-甲基噻吩衍生物分子器件電學(xué)特性研究[D];東北大學(xué);2014年
2 劉然;有機(jī)分子器件的電極距離效應(yīng)與電輸運(yùn)機(jī)理研究[D];山東師范大學(xué);2016年
3 李懷志;溶劑環(huán)境對(duì)分子器件電學(xué)性質(zhì)的影響[D];山東師范大學(xué);2009年
4 李紅海;分子器件的電子結(jié)構(gòu)和輸運(yùn)性質(zhì)[D];山東師范大學(xué);2002年
5 宋秀能;苯胺類分子器件電學(xué)特性的理論研究[D];山東師范大學(xué);2008年
6 鄒斌;分子器件電子輸運(yùn)性質(zhì)理論研究[D];山東師范大學(xué);2005年
7 李彩霞;基于卟啉光敏劑的光致產(chǎn)氫分子器件的研究[D];大連理工大學(xué);2010年
8 趙寶義;有機(jī)分子器件I-V特性的研究[D];河北師范大學(xué);2009年
9 何軍;C_(60)分子器件電子輸運(yùn)性質(zhì)的第一性原理研究[D];湖南大學(xué);2009年
10 秦伊南;分子器件的構(gòu)筑及其基礎(chǔ)應(yīng)用與研究[D];長(zhǎng)春理工大學(xué);2012年
,本文編號(hào):1455361
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1455361.html