熱帶上對(duì)流層下平流層區(qū)域痕量成分的傳輸和時(shí)空變化特征研究
本文關(guān)鍵詞:熱帶上對(duì)流層下平流層區(qū)域痕量成分的傳輸和時(shí)空變化特征研究 出處:《蘭州大學(xué)》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 上對(duì)流層下平流層(UTLS) 磁帶記錄現(xiàn)象 準(zhǔn)兩年振蕩(QBO) 亞洲夏季風(fēng)反氣旋環(huán)流 一氧化碳 大氣化學(xué)氣候模式
【摘要】:利用衛(wèi)星觀測(cè)資料、再分析資料,結(jié)合大氣化學(xué)氣候模式(WACCM),研究了熱帶上對(duì)流層下平流層(UTLS)區(qū)域一氧化碳(CO)時(shí)空變化和熱帶平流層CO準(zhǔn)兩年振蕩(QBO)位相變化特征的形成機(jī)理,分析了亞洲夏季風(fēng)反氣旋環(huán)流造成的副熱帶地區(qū)向熱帶地區(qū)的CO水平輸送對(duì)熱帶UTLS區(qū)域CO時(shí)空變化的影響,最后還分析了不同區(qū)域排放的大氣示蹤物向UTLS區(qū)域動(dòng)力傳輸?shù)奶卣。所得主要結(jié)論如下:(1)利用全球化學(xué)氣候模式WACCM模擬研究了CO地表排放、動(dòng)力過程及與CO有關(guān)的化學(xué)過程對(duì)熱帶UTLS區(qū)域CO時(shí)空變化的影響。模擬結(jié)果表明,熱帶上對(duì)流層CO的半年周期變化主要是CO地表排放源的半年周期變化導(dǎo)致的,化學(xué)和動(dòng)力過程的共同作用對(duì)CO半年周期變化的影響相對(duì)較小。下平流層CO的年周期變化主要是化學(xué)和動(dòng)力過程共同作用的結(jié)果,且動(dòng)力過程造成的CO年周期變化與化學(xué)過程造成的年周期變化呈反位相。模擬結(jié)果進(jìn)一步表明,CO地面源排放可減弱下平流層CO年周期變化的振幅,Brewer-Dobson環(huán)流經(jīng)向分量的年變化可增強(qiáng)30 hPa高度以上CO年周期變化的振幅。模擬結(jié)果也表明,50-70 hPa高度范圍內(nèi)的CO年周期變化主要與熱帶上涌的年周期變化信號(hào)有關(guān),50 hPa高度以上的CO年周期變化則表現(xiàn)為標(biāo)準(zhǔn)的磁帶記錄現(xiàn)象,且在沒有與CO有關(guān)的化學(xué)過程的影響時(shí),CO的年周期變化信號(hào)可被上傳至10 hPa高度。此外,熱帶深對(duì)流活動(dòng)和亞洲夏季風(fēng)反氣旋環(huán)流導(dǎo)致的熱帶外地區(qū)向熱帶地區(qū)的CO水平傳輸?shù)墓餐饔脤?dǎo)致了熱帶上對(duì)流層和對(duì)流層頂附近的CO濃度極大值出現(xiàn)在晚春初夏(5月)。(2)利用2005-2014年10年的衛(wèi)星微波臨邊探測(cè)儀(MLS)資料分析了熱帶平流層CO的年際變率,發(fā)現(xiàn)熱帶平流層CO準(zhǔn)兩年振蕩在30 hPa高度附近存在明顯的位相變化特征。WACCM模式模擬結(jié)果表明,熱帶平流層CO的QBO信號(hào)是化學(xué)和動(dòng)力過程共同作用的結(jié)果,而動(dòng)力作用主要是QBO引起的次級(jí)經(jīng)向環(huán)流造成的物質(zhì)傳輸;瘜W(xué)和動(dòng)力過程共同作用導(dǎo)致熱帶平流層CO濃度的垂直梯度在30 hPa高度處發(fā)生反轉(zhuǎn),進(jìn)而產(chǎn)生CO QBO信號(hào)的位相變化。此外,模擬結(jié)果還表明,與CO有關(guān)的化學(xué)過程不但可以減弱CO QBO信號(hào)的振幅,還可以在熱帶10 hPa-30 hPa高度范圍內(nèi)造成CO QBO和緯向風(fēng)QBO信號(hào)之間約3個(gè)月的時(shí)間差。(3)利用WACCM模式模擬分析了青藏高原、中國(guó)東部、印度和東南亞大陸地區(qū)的CO地表排放對(duì)UTLS區(qū)域CO時(shí)空分布的影響。模擬結(jié)果表明,源于青藏高原和印度地區(qū)的CO可在亞洲夏季風(fēng)反氣旋環(huán)流內(nèi)部形成CO濃度高值中心,且高值中心分別在7月和5月最明顯;源于中國(guó)東部和東南亞大陸地區(qū)的CO則沿著亞洲夏季風(fēng)反氣旋環(huán)流形成CO濃度的環(huán)狀高值帶,且濃度高值分別在8月和5月最明顯。分析還發(fā)現(xiàn),亞洲夏季風(fēng)反氣旋環(huán)流可將亞洲地區(qū)排放的CO從副熱帶地區(qū)向熱帶地區(qū)輸送,最終導(dǎo)致熱帶UTLS區(qū)域5-9月的CO濃度較其他月份偏高。青藏高原、中國(guó)東部、印度和東南亞大陸地區(qū)排放的CO導(dǎo)致的熱帶UTLS區(qū)域CO濃度增加最為顯著的月份分別出現(xiàn)在7月、8月、6月和6月。此外,模擬結(jié)果還表明,在青藏高原、中國(guó)東部、印度和東南亞大陸地區(qū)排放等量的CO時(shí),東南亞大陸地區(qū)的CO地表排放對(duì)熱帶UTLS區(qū)域CO時(shí)空變化的影響最大。(4)利用WACCM模式模擬分析了不同區(qū)域排放的大氣示蹤物在動(dòng)力作用下向UTLS區(qū)域的傳輸特征。結(jié)果表明,在東南亞和亞洲西南部地區(qū)排放的示蹤物可被更多的上傳至平流層;在歐洲地區(qū)排放的示蹤物可被上傳至平流層的量最少。結(jié)果還表明,不同區(qū)域排放的示蹤物主要分布在印度尼西亞、赤道中西太平洋、印度和東南亞大陸以及阿拉伯海和孟加拉灣(60°W-120°E,10°S-30°N)、非洲地區(qū)、南美洲中部地區(qū)、北半球赤道東太平洋(120°W-80°W,0°-30°N)、以及赤道大西洋西部(80°W-20°W,10°N-10°S)等深對(duì)流活動(dòng)活躍的區(qū)域及其附近。在100 hPa高度,非洲和南美洲地區(qū)排放的物質(zhì)在冬季分別在非洲和南美洲中部地區(qū)形成濃度高值,這可能與兩區(qū)域在冬季旺盛的深對(duì)流活動(dòng)有關(guān);受赤道東風(fēng)帶和冬季北半球赤道西太平洋區(qū)域反氣旋環(huán)流對(duì)物質(zhì)水平輸送的影響,在非洲和南美洲以外的地區(qū)排放的物質(zhì)在冬季主要分布在印度尼西亞和赤道中西太平洋區(qū)域;受深對(duì)流活動(dòng)和亞洲夏季風(fēng)反氣旋環(huán)流共同作用的影響,在夏季,歐洲地區(qū)、中國(guó)東部、東南亞地區(qū)和亞洲西南部地區(qū)排放的物質(zhì)主要分布在60°W-120°E,10°S-30°N區(qū)域。北美洲南部區(qū)域存在的弱的反氣旋環(huán)流,可能是北美洲和南美洲地區(qū)排放的物質(zhì)在6月分布在赤道東太平洋區(qū)域的原因。南美洲和北美洲地區(qū)排放的物質(zhì)在5月在赤道大西洋西部區(qū)域形成的濃度高值可能與赤道東風(fēng)帶對(duì)物質(zhì)的水平傳輸有關(guān)。
[Abstract]:The use of satellite observation data, reanalysis data, combined with the atmospheric chemistry climate model (WACCM), on the tropical upper troposphere and lower stratosphere (UTLS) region of carbon monoxide (CO) and the temporal and spatial variation of the tropical stratosphere CO quasi biennial oscillation (QBO) formation mechanism of phase change characteristics, analysis of the Asian summer monsoon caused by subtropical anticyclonic circulation area transfer effects on UTLS regional variation of CO tropical to tropical regions, the level of CO, and finally analyzes the characteristics of Atmospheric Tracer emissions in different regions to UTLS regional power transmission. The main conclusions are as follows: (1) simulation of CO surface emission using WACCM global chemistry climate model, dynamic effect and chemical process the process associated with the CO UTLS CO on temporal and spatial variation of tropical region. The simulation results show that the first half cycle of tropical tropospheric CO is mainly caused the first half cycle of CO surface emission sources The effects of chemical and dynamic processes of CO of semiannual variations are relatively small. Annual variation in lower stratosphere CO is mainly the interaction of chemical and dynamical process results, annual changes caused by the dynamic process of CO and the annual change and chemical processes in opposite phase. Simulation results show that CO ground source emissions can be reduced the amplitude of annual variation in lower stratosphere CO, the amplitude of Brewer-Dobson circulation can enhance the height of 30 hPa above CO years cycle changes to change components. The simulation results also show that the CO cycle changes of 50-70 in the range of hPa height is mainly related with the annual change signal of tropical upwelling, tape record the phenomenon of CO year period more than 50 hPa high performance standards, and has no effect on chemical processes associated with CO when the annual variation of CO signal can be uploaded to the 10 hPa . in addition, resulting in tropical deep convection and the Asian summer monsoon anticyclone in the extratropical interaction to the level of CO transmission in tropical regions in the tropical upper troposphere tropopause and CO concentration near the maximum value appeared in the late spring and early summer (May). (2) edge detector using satellite microwave 2005-2014 10 the (MLS) data analysis of the interannual variability of the tropical stratosphere CO, found in the tropical stratosphere CO quasi biennial oscillation in 30 near the altitude of hPa has obvious phase change characteristic of.WACCM model simulation results show that the QBO signal of CO is the common tropical stratospheric chemistry and dynamic process results, while the dynamic effect is mainly secondary material transfer the QBO due to the circulation caused by the interaction of chemical and dynamical processes lead to the vertical gradient of CO concentration in the tropical stratosphere at the height of 30 hPa is reversed, and produce CO QBO signal The change of phase. In addition, the simulation results also show that the amplitude of chemical processes associated with CO can not only weaken the CO QBO signal, it can cause about 3 months of the time difference between CO QBO and QBO in the tropical zonal wind signal of 10 hPa-30 hPa height range. (3) using the WACCM model analysis of the Qinghai Tibet Plateau China, Eastern mainland, India and Southeast Asia CO surface emissions impact on UTLS regional CO distribution. The simulation results show that the source in the Qinghai Tibet Plateau and the India area CO formed CO concentration center in the Asian summer monsoon anticyclone, and the high value center respectively in July and May with the most obvious; the high value in the East and Southeast the ring-shaped source China mainland CO along the Asian summer monsoon anticyclone formation of CO concentration, and high concentration values respectively in August and May is the most obvious. The analysis also found that the Asian summer monsoon anticyclone can The emission of CO from Asia subtropical to tropical area transportation, eventually led to the concentration of CO UTLS 5-9 months of tropical regions is higher than other months. The eastern Qinghai Tibet Plateau, China, emissions in mainland India and Southeast Asia CO in tropical UTLS regional CO concentrations increased most significantly respectively in July, August June, and June. In addition, the simulation results also show that in the Qinghai Tibet Plateau, China East, India and Southeast Asia area, the same amount of CO emissions, CO emissions in mainland southeast surface effects on the UTLS region of CO. The temporal and spatial variation of tropical (4) using the WACCM model analysis of the Atmospheric Tracer emissions in different regions under dynamic force to the transmission characteristics of the UTLS regions. The results show that in the tracer of Southeast Asia and southwest Asia emissions can be more uploaded to Europe in the stratosphere; tracer emissions can Uploaded to the stratosphere is the least. The results also show that the tracer emissions in different regions are mainly distributed in Indonesia, Equatorial Western Pacific and Southeast Asia, India, and the Arabia sea and the bay of Bengal (60 degrees W-120 degrees E, 10 degrees S-30 degrees N), the central region of Africa, South America and the northern hemisphere (the eastern equatorial Pacific 120 degrees W-80 degrees W, 0 degrees -30 degrees N), and the the Atlantic West (80 degrees W-20 degrees W, 10 degrees N-10 degrees S) and deep convection active region and its vicinity. At the height of 100 hPa, from Africa and South America material in winter respectively in the central region of Africa and South America formed the concentration of high value, which may be relevant in two areas of deep convection in winter exuberant; influenced by equatorial easterlies and winter Northern Hemisphere tropical western Pacific anticyclone on the transport of material level, in addition to Africa and South America area emissions in winter The season is mainly distributed in Indonesia and the equatorial western Pacific region; affected by deep convection and the Asian summer monsoon anticyclone interaction in the summer, the European region, Eastern China, emissions in Southeast Asia and southwest Asia material are mainly distributed in 60 ~ W-120 ~ E, 10 ~ S-30 ~ N presence in north area. South America region of the weak anticyclonic circulation, may be discharged North America and South America material distribution in June in the eastern equatorial Pacific region. The high concentration of emissions of North and South America area in the equatorial western the Atlantic region formed in May and equatorial easterlies horizontal transmission of material relevant.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:P421
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 包云;李曉兵;李超;黃玲梅;于靜;;1961-2007年內(nèi)蒙古氣溫時(shí)空變化特征分析[J];干旱區(qū)資源與環(huán)境;2010年12期
2 李廣霞;劉雪鋒;李軍林;王明華;戴廷仁;;遼寧省氣溫與降水時(shí)空變化特征分析[J];安徽農(nóng)業(yè)科學(xué);2010年32期
3 宋連春;近40年我國(guó)氣溫時(shí)空變化特征[J];應(yīng)用氣象學(xué)報(bào);1994年01期
4 楊智;劉志剛;李娟;;云南省地氣溫差時(shí)空變化特征分析[J];云南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年S1期
5 尹文有;田文壽;琚建華;;西南地區(qū)不同地形臺(tái)階氣溫時(shí)空變化特征[J];氣候變化研究進(jìn)展;2010年06期
6 黃琰;封國(guó)林;董文杰;;近50年中國(guó)氣溫、降水極值分區(qū)的時(shí)空變化特征[J];氣象學(xué)報(bào);2011年01期
7 嚴(yán)登華;袁U,
本文編號(hào):1409806
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1409806.html