油田壓裂微地震地面監(jiān)測(cè)速度模型校正及定位研究
本文關(guān)鍵詞:油田壓裂微地震地面監(jiān)測(cè)速度模型校正及定位研究 出處:《吉林大學(xué)》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 微地震地面監(jiān)測(cè) 三維射線追蹤 微地震定位 速度模型校正 三維微地震監(jiān)測(cè)可視化模塊
【摘要】:低滲透油氣藏微地震監(jiān)測(cè)研究就是利用地下巖層錯(cuò)動(dòng)或斷裂而產(chǎn)生的聲發(fā)射現(xiàn)象對(duì)微地震震源位置進(jìn)行定位的一種技術(shù)方法。近年來(lái),隨著微地震監(jiān)測(cè)理論不斷發(fā)展成熟,基于微震監(jiān)測(cè)的裂縫評(píng)價(jià)技術(shù)已成為低滲透油氣藏開(kāi)采過(guò)程中最直觀而又可靠的技術(shù)。微地震監(jiān)測(cè)方式主要有兩種:井中監(jiān)測(cè)與地面監(jiān)測(cè)。與地面監(jiān)測(cè)相比,井中監(jiān)測(cè)具有微震事件能量比較強(qiáng),數(shù)據(jù)信噪比較高,并且能夠避免地面噪聲干擾等優(yōu)勢(shì),在國(guó)內(nèi)外獲得了廣泛的認(rèn)可。但井中監(jiān)測(cè)對(duì)壓裂現(xiàn)場(chǎng)條件要求較高,并且施工操作復(fù)雜,在沒(méi)有監(jiān)測(cè)井的情況下無(wú)法開(kāi)展工作。而地面監(jiān)測(cè)不受壓裂現(xiàn)場(chǎng)井網(wǎng)條件及施工難度制約,將是今后主要發(fā)展方向之一,本課題針對(duì)地面監(jiān)測(cè),圍繞微地震監(jiān)測(cè)方法、理論、數(shù)值模擬以及野外實(shí)驗(yàn)等方面,對(duì)微震監(jiān)測(cè)中的正演、速度模型構(gòu)建、微地震定位以及三維微震監(jiān)測(cè)可視化軟件等關(guān)鍵技術(shù)進(jìn)行了研究。以地震射線追蹤為主的正演環(huán)節(jié)直接影響震源定位質(zhì)量以及計(jì)算效率。因此,需要尋找一種計(jì)算靈活,高效而又準(zhǔn)確的射線追蹤算法。而地震勘探領(lǐng)域中廣泛應(yīng)用的最短路徑法在地面檢波器數(shù)量較少,地下震源較多的情況下,則存在處理射線不夠靈活,提高精度的同時(shí)嚴(yán)重占用計(jì)算機(jī)內(nèi)存且耗費(fèi)大量計(jì)算時(shí)間等問(wèn)題。針對(duì)三維層狀結(jié)構(gòu),提出采用二分法對(duì)傳統(tǒng)逐步迭代法進(jìn)行改進(jìn),提高了射線追蹤正演計(jì)算效率。針對(duì)三維低密度網(wǎng)格結(jié)構(gòu),將逐段迭代法與中垂線點(diǎn)搜索方式相結(jié)合,提出了一種新的兩點(diǎn)間三維射線追蹤方法,與最短路徑法相比,該方法在保證精度的同時(shí),能夠大幅提高計(jì)算效率,為微地震監(jiān)測(cè)引入較復(fù)雜的速度模型提供了可能。震源定位是微地震監(jiān)測(cè)中的核心問(wèn)題,傳統(tǒng)定位算法是提取大量檢波器所獲微震信號(hào)的初至?xí)r間,并優(yōu)化求解超定方程組以確定震源位置。但其主要缺陷在于該方法僅能采用均勻速度模型進(jìn)行定位。本文采用基于網(wǎng)格搜索類的微地震定位技術(shù)對(duì)地下微地震事件進(jìn)行定位,可引入更為精細(xì)的速度模型,以提高微地震定位可信度。但該方法存在計(jì)算效率與定位精度無(wú)法平衡的不足。因此,文中采用網(wǎng)格逐次剖分思想對(duì)常規(guī)網(wǎng)格搜索類微地震定位方法進(jìn)行改進(jìn)。該方法對(duì)目標(biāo)區(qū)域進(jìn)行首次剖分后,在最大能量聚焦的網(wǎng)格中心點(diǎn)附近進(jìn)行進(jìn)一步的細(xì)分搜索,尋找全局最大能量聚焦值,避免了為了提高定位精度而進(jìn)行的全局化細(xì)分,以較小的計(jì)算代價(jià)獲得了更高的定位精度。文中還對(duì)速度模型對(duì)該算法的影響進(jìn)行了分析與討論,最后,通過(guò)模型試算及野外實(shí)際數(shù)據(jù)處理驗(yàn)證了改進(jìn)后的微地震定位算法在計(jì)算效率以及計(jì)算精度上的優(yōu)勢(shì)。速度模型是影響微地震定位精度主要因素。本文首先對(duì)基于初至?xí)r差地面微地震速度模型構(gòu)建進(jìn)行了研究,壓裂射孔信號(hào)是速度模型校正的重要先驗(yàn)信息,而實(shí)際監(jiān)測(cè)過(guò)程中射孔起震時(shí)刻無(wú)法準(zhǔn)確獲取。為解決此問(wèn)題,提出基于初至?xí)r差的雙差分均方根誤差來(lái)描述理論速度模型與實(shí)際速度模型之間的差異,采用極快速模擬退火法盡可能的降低雙差分均方根誤差值,在雙差分均方根誤差最小值一定閾值范圍內(nèi)選取對(duì)應(yīng)的速度模型,并依次對(duì)射孔點(diǎn)進(jìn)行重定位,進(jìn)而篩選出速度模型最優(yōu)解。當(dāng)儲(chǔ)層較深時(shí),射孔地面記錄通常具有低信噪比的特征,很難準(zhǔn)確拾取縱橫波初至信息。本文基于偏移振幅疊加法,并結(jié)合極快速模擬退火方案,提出一種新的速度模型構(gòu)建方案,該方案不需要拾取震相初至信息,通過(guò)監(jiān)測(cè)射孔點(diǎn)處能量聚焦情況,并以射孔點(diǎn)重定位精度,判定速度模型是否可用于后續(xù)微地震定位。由于地震數(shù)據(jù)反演非唯一性,在利用該方法時(shí)將速度模型校正作為一種誤差補(bǔ)償方案以提高射孔重定位精度。合成數(shù)據(jù)試算結(jié)果表明:采用振幅疊加方法校正后的速度模型,對(duì)兩種主要誤差都有較好的補(bǔ)償效果。在射孔記錄信噪比S/N=0.1時(shí),100次定位誤差均在2m以內(nèi),而基于初至?xí)r差法則完全失效。鑒于目前國(guó)內(nèi)適用于微地震監(jiān)測(cè)三維可視化軟件的匱乏,本課題采用Open GL繪圖技術(shù),將Qt Creator植入Visual Studio 2010作為Open GL開(kāi)發(fā)環(huán)境,利用C++語(yǔ)言開(kāi)發(fā)了微地震監(jiān)測(cè)三維可視化模塊,利用坐標(biāo)變換將處理好的微地震數(shù)據(jù)導(dǎo)入到計(jì)算模塊,通過(guò)分析處理,在輸出設(shè)備上直觀的顯示微地震事件,為微地震監(jiān)測(cè)工作提供了較為便利的人機(jī)交互工具。本文將震源識(shí)別,射線追蹤,微地震定位,速度模型構(gòu)建,及三維等模塊嵌入,設(shè)計(jì)開(kāi)發(fā)了三維微地震地面監(jiān)測(cè)軟件系統(tǒng),并將該系統(tǒng)應(yīng)用于山西省婁煩縣寧武盆地野外壓裂實(shí)驗(yàn),實(shí)際應(yīng)用表明該系統(tǒng)在地質(zhì)條件簡(jiǎn)單的地區(qū)用于水力壓裂裂縫監(jiān)測(cè)是可行的,未來(lái)通過(guò)對(duì)速度模型校正方法的改進(jìn),可推廣至地質(zhì)條件較復(fù)雜的地區(qū)。創(chuàng)新之處在于文中在目前較為常用的射線追蹤算法的基礎(chǔ)上進(jìn)行改進(jìn),在不影響計(jì)算精度的前提下,計(jì)算效率更高,更適用于微地震監(jiān)測(cè)領(lǐng)域;在微地震地面監(jiān)測(cè)速度模型構(gòu)建方面,針對(duì)射孔記錄信噪比較高的情況,提出了基于初至?xí)r差的微地震速度模型校正方法,避免了射孔信號(hào)起震時(shí)刻未知,測(cè)井曲線初值不準(zhǔn)等問(wèn)題,解決了速度模型反演非唯一性的問(wèn)題。針對(duì)射孔信噪比較低的情況,本文提出采用振幅偏移疊加微地震速度模型校正方法,避免了在低信噪比情況下,地震波初至拾取不準(zhǔn)確的問(wèn)題;在微地震定位方面,提出了網(wǎng)格逐次剖分法對(duì)常規(guī)的基于網(wǎng)格搜索類微地震定位算法進(jìn)行改進(jìn),平衡與兼顧了計(jì)算效率與計(jì)算精度,為微地震實(shí)時(shí)監(jiān)測(cè)提供了可能;最后設(shè)計(jì)研制了微地震三維可視化模塊,為微地震監(jiān)測(cè)工作提供了便利的可視化工具。
[Abstract]:Low permeability oil and gas reservoir study on microseismic monitoring is the use of underground rock dislocation or fracture caused by acoustic emission phenomena of a technique of micro earthquake locations are located. In recent years, with the continuous development of the theory of micro seismic monitoring, crack evaluation of microseismic monitoring technology has become a process of low permeability oil and gas reservoirs in the most intuitive and reliable based on technology. There are two main ways: micro seismic monitoring wells monitoring and ground monitoring. Compared with the ground monitoring, monitoring wells with microseismic event energy is relatively strong, data with high SNR, and can avoid the ground noise and other advantages, has been widely recognized at home and abroad. Monitoring wells fracturing requires high field conditions, and the construction of complex operation, unable to work in the absence of monitoring wells. The ground monitoring is not affected by the field well network condition and construction difficult The degree of control, will be the main development direction of the topic for the ground monitoring, around the micro seismic monitoring method, theory, numerical simulation and field experiment, the forward speed in microseismic monitoring, model construction, micro seismic location and three-dimensional microseismic monitoring of key technologies of visualization software is studied. The play links affecting the quality and efficiency of source location calculation directly to seismic ray tracing. Therefore, there is a need for calculation of flexible, efficient and accurate ray tracing algorithm. They are widely used in the field of seismic exploration of the shortest path method in ground detector number of underground source under many circumstances, there is not enough X-ray treatment flexible, improve the accuracy and take up serious problems of computer memory and consume a large amount of computation time. The three-dimensional layered structure, based on the traditional dichotomy gradually The iterative method is improved and the improved ray tracing forward calculation efficiency. According to the grid structure of 3D low density, the iterative method and the combination of perpendicular search, proposed a new 3D ray tracing method between two points, compared with the shortest path method, the method of ensuring the accuracy and greatly to improve the computational efficiency, provides the possibility for micro seismic monitoring into the complicated velocity model. The source location is the key problem of micro seismic monitoring in the traditional location algorithm is extracted from a large number of detector received the first arrival time of microseismic signals, and the optimization solution of overdetermined equations to determine the source location. But its main drawback is that the method only by using the uniform velocity model for positioning. This paper adopts micro seismic location technology of grid search class to locate underground microseismic events based on the introduction of more precise velocity model, to Improve the micro seismic location reliability. But this method has less calculation to balance efficiency and positioning accuracy. Therefore, the ideas of conventional grid search micro seismic location method is improved by using the grid in this paper. The method of successive section for the first time to partition the target area after further subdivision in the vicinity of the grid center's search high energy focusing, finding the global maximum energy focus value, avoid the Global Subdivision and in order to improve the positioning accuracy, with low computational cost to obtain a higher positioning accuracy. The velocity model are analyzed and discussed, the effect of the algorithm. Finally, through the model test and field data processing results of micro seismic location algorithm improved the calculation efficiency and calculation accuracy. The advantage of speed model is the influence of micro seismic location. Firstly, the main factors Based on the first arrival time difference of ground micro seismic velocity model is studied, fracturing perforation signal speed is important prior information of model calibration, and the actual monitoring process of perforating shock moment cannot be obtained accurately. To solve this problem, put forward to the early time of double differential RMS error to describe the differences between the theoretical model and speed the actual speed based on the model, using very fast simulated annealing method as much as possible to reduce the double differential RMS error value, the double differential root mean square error of the minimum velocity model corresponding to the selected threshold range, and turn on the perforation point positioning, and then screened the optimal velocity model solution. When the reservoir is deep, perforating records often has the characteristics of low SNR, it is difficult to pick up the wave first break information. In this paper, offset amplitude superposition method based on, combined with the very fast simulated annealing scheme is proposed. A new velocity model is proposed, the scheme does not require picking phase initial information, by monitoring the perforating point energy focusing, and point to the perforation position precision and speed to determine whether the model can be used for subsequent micro seismic location. Because seismic data inversion of non uniqueness, in the use of this method will speed model as a kind of correction error compensation scheme to improve perforation accurate positioning. The test results show that: using synthetic data amplitude superposition method for velocity model after correction, has good compensation effect of the two main error. In perforating record SNR S/N=0.1, 100 times the positioning error is within 2m, and based on the first arrival time law of failure. In view of the lack of suitable for the micro seismic monitoring and 3D visualization software, this paper adopts the Open GL graphics, Qt Creator Visual Studio Open GL 2010 as the implantation of open Development environment, C++ language is used to develop the micro seismic monitoring and 3D visualization module, micro seismic data into the calculation module by using coordinate transformation will be dealt with, by analyzing and processing, visual display of micro seismic events on output devices, micro earthquake monitoring provides more convenient tools for human-computer interaction. The source identification, ray tracing, micro earthquake location, velocity model, and 3D module design and development of embedded 3D micro seismic ground monitoring software system, and this system is applied to the Shanxi Ningwu basin in Loufan County, field fracturing experiment, the practical application shows that the system used in the simple geological condition area monitoring hydraulic fractures is feasible the future, through the improvement of the speed model correction method, can be extended to more complicated geological conditions in the region. Innovations in this paper are often used after Ray Based on the improved tracking algorithm, the computational accuracy is not under the influence of more efficient, more suitable for the field of micro seismic monitoring; micro seismic ground monitoring speed model, aiming at the perforating record high SNR, the first arrival time difference of micro seismic velocity correction method based on the model. To avoid the vibration signal of perforation is unknown, the initial value of logging curves and other issues are not allowed, solves the non uniqueness of the model inversion problem. For perforating the SNR is low, the amplitude of migration stack micro seismic velocity model correction method is avoided in case of low SNR, the problem is not to pick up accurate seismic wave; in the micro earthquake location, this paper proposes a grid partition method of successive improvement of conventional grid search based on micro earthquake location algorithm, and taking into account the balance calculation efficiency and precision. It provides the possibility for real-time monitoring of microseismic events. Finally, a 3D visualization module for microseismic design is developed, which provides a convenient visualization tool for microseismic monitoring.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:P631.4;TE357
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉建中,王春耘,劉繼民,趙玉武,劉志鵬;用微地震法監(jiān)測(cè)油田生產(chǎn)動(dòng)態(tài)[J];石油勘探與開(kāi)發(fā);2004年02期
2 T. Wallroth ,朱成宏;用注水激發(fā)的微地震描述裂隙儲(chǔ)層[J];石油物探譯叢;1996年06期
3 劉建安,馬紅星,慕立俊,邱筱琳;井下微地震裂縫測(cè)試技術(shù)在長(zhǎng)慶油田的應(yīng)用[J];油氣井測(cè)試;2005年02期
4 王亞娟;張華光;王成旺;劉利霞;鄧軍;胡淑娟;;利用微地震測(cè)繪和壓裂模擬分析進(jìn)行水力裂縫增長(zhǎng)動(dòng)態(tài)研究[J];國(guó)外油田工程;2006年10期
5 朱衛(wèi)星;;相關(guān)濾波在微地震數(shù)據(jù)處理中的應(yīng)用[J];勘探地球物理進(jìn)展;2007年02期
6 黃今;蘇華友;沙椿;何剛;郝名揚(yáng);;錦屏電站微地震監(jiān)測(cè)儀故障分析與探討[J];科技經(jīng)濟(jì)市場(chǎng);2008年11期
7 周仲禮;王琪;殷靜;范譚廣;談偉敦;;用微地震發(fā)現(xiàn)高速巖性及識(shí)別油氣[J];吐哈油氣;2008年03期
8 黃今;蘇華友;盧國(guó)勝;杜林;范波峰;;采動(dòng)過(guò)程中微地震定位方法研究[J];現(xiàn)代礦業(yè);2009年02期
9 黃克獻(xiàn);李利立;劉軍芳;岳琳;楊啟明;;微地震地下影像技術(shù)在注水破裂監(jiān)測(cè)和剩余油分布研究中的應(yīng)用[J];內(nèi)蒙古石油化工;2009年14期
10 胡慶春;孟米;;基于大井距油氣田的微地震壓裂監(jiān)測(cè)技術(shù)研究[J];天然氣技術(shù)與經(jīng)濟(jì);2011年04期
相關(guān)會(huì)議論文 前4條
1 儲(chǔ)仿東;王永輝;李永平;衡峰;容嬌君;;微地震井中監(jiān)測(cè)技術(shù)在致密砂巖中的應(yīng)用實(shí)例[A];中國(guó)地球物理2013——第十二專題論文集[C];2013年
2 余洋洋;梁春濤;楊宜海;;微地震監(jiān)測(cè)系統(tǒng)的設(shè)計(jì)[A];中國(guó)地球物理2013——第二十三專題論文集[C];2013年
3 張佩;張海江;M.Nafi Toksoz;;猶他州Cove Fort-Sulphurdale地區(qū)微地震震源機(jī)制研究與應(yīng)用[A];2014年中國(guó)地球科學(xué)聯(lián)合學(xué)術(shù)年會(huì)——專題12:強(qiáng)震機(jī)理、孕育環(huán)境與地震活動(dòng)性分析論文集[C];2014年
4 駱循;;礦山與大型地下工程災(zāi)害監(jiān)測(cè)的微地震技術(shù)應(yīng)用[A];中國(guó)地球物理學(xué)會(huì)第二十三屆年會(huì)論文集[C];2007年
相關(guān)重要報(bào)紙文章 前3條
1 特約記者 李銘 通訊員 彭樹(shù)禹;長(zhǎng)慶井下首次實(shí)施微地震試驗(yàn)成功[N];中國(guó)石油報(bào);2009年
2 特約記者 林勇;勝利油田首次自主微地震壓裂監(jiān)測(cè)采集試驗(yàn)成功[N];東營(yíng)日?qǐng)?bào);2010年
3 記者 金江山 通訊員 王曉泉;井中微地震裂縫監(jiān)測(cè)技術(shù)獲重大突破[N];中國(guó)石油報(bào);2013年
相關(guān)博士學(xué)位論文 前3條
1 江海宇;油田壓裂微地震地面監(jiān)測(cè)速度模型校正及定位研究[D];吉林大學(xué);2016年
2 張喚蘭;微地震數(shù)值模擬及震源定位方法研究[D];西安科技大學(xué);2014年
3 逄煥東;巖體微地震的模式、定位及其失穩(wěn)預(yù)報(bào)研究[D];山東科技大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 王超;微地震正演方法研究[D];長(zhǎng)安大學(xué);2015年
2 李亮;微地震信號(hào)自動(dòng)檢測(cè)及震源掃描分割矩陣反演方法研究[D];長(zhǎng)安大學(xué);2015年
3 于子超;水力壓裂微地震信號(hào)提取與裂縫反演研究[D];長(zhǎng)安大學(xué);2015年
4 蔣騰飛;微地震數(shù)據(jù)去噪方法研究[D];長(zhǎng)江大學(xué);2015年
5 毛小波;基于PTP的多節(jié)點(diǎn)微地震數(shù)據(jù)懫集與傳輸技術(shù)研究[D];成都理工大學(xué);2015年
6 王子陽(yáng);砂礫巖體人工裂縫及地層物性的微地震方法研究[D];中國(guó)石油大學(xué)(華東);2014年
7 屈敬翔;面向頁(yè)巖氣勘探的微地震采集記錄儀研制[D];中國(guó)海洋大學(xué);2015年
8 田厚強(qiáng);鄆城煤礦綜放采場(chǎng)微地震與應(yīng)力特征研究及應(yīng)用[D];安徽理工大學(xué);2016年
9 呂世超;微地震有效事件識(shí)別及震源自動(dòng)定位方法研究[D];中國(guó)石油大學(xué);2011年
10 張淑珍;微地震法井間監(jiān)測(cè)技術(shù)在大慶外圍油田中的應(yīng)用[D];東北石油大學(xué);2010年
,本文編號(hào):1408762
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1408762.html