幾種典型有機(jī)疊氮化物的高壓研究
本文關(guān)鍵詞:幾種典型有機(jī)疊氮化物的高壓研究 出處:《吉林大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 有機(jī)疊氮化物 高壓拉曼光譜 高壓紅外光譜 高壓同步輻射X光衍射 結(jié)構(gòu)相變
【摘要】:能源是人類生活的物質(zhì)基礎(chǔ),也是科學(xué)研究的永恒課題,其中高能量密度材料的合成一直是凝聚態(tài)物理與材料科學(xué)研究中的熱點(diǎn)問(wèn)題。壓力是獨(dú)立于溫度和組分的基本熱力學(xué)參數(shù),可以改變?cè)优帕泻碗娮討B(tài)分布,從而引起物質(zhì)的結(jié)構(gòu)發(fā)生變化,使得常壓下難以合成的材料在壓力的作用下得以實(shí)現(xiàn)。單鍵態(tài)的聚合氮以其較高的能量密度(高達(dá)38.4 k J/cm3)和清潔的產(chǎn)物(氮?dú)?成為物理學(xué)中十分重要的研究領(lǐng)域。高壓是合成聚合氮的一種有效方法。自從疊氮化鈉在3300K和120 GPa的條件下成功轉(zhuǎn)變?yōu)槌合聛喎(wěn)態(tài)的單鍵態(tài)聚合氮之后,疊氮化物成為高壓下合成聚合氮的理想前驅(qū)體。但是大量無(wú)機(jī)疊氮化物的理論和實(shí)驗(yàn)研究表明,疊氮根在高壓下不容易彎曲,從而很難發(fā)生電子軌道雜化,進(jìn)而發(fā)生氮聚合的壓力較高,這限制了實(shí)際應(yīng)用與科學(xué)研究。有機(jī)疊氮化物作為疊氮化物的另一個(gè)重要分支,其疊氮基的電子結(jié)構(gòu)與無(wú)機(jī)疊氮化物中疊氮根的電子結(jié)構(gòu)不同。這種不同的電子結(jié)構(gòu)會(huì)使疊氮基表現(xiàn)出異于疊氮根的高壓行為,很可能會(huì)更容易形成聚合氮,從而降低發(fā)生氮聚合的壓力點(diǎn)。本論文采用金剛石對(duì)頂砧裝置,利用高壓拉曼散射、高壓紅外吸收以及高壓同步輻射X光衍射技術(shù),對(duì)三類典型的有機(jī)疊氮化物進(jìn)行系統(tǒng)的高壓研究,探究其高壓結(jié)構(gòu)相變和相變類型,揭示了疊氮基的高壓行為規(guī)律以及影響疊氮基高壓行為的因素。首先,我們對(duì)卞基疊氮化物疊氮芐進(jìn)行高壓拉曼散射和高壓同步輻射X光衍射實(shí)驗(yàn),實(shí)驗(yàn)的最高壓力為30.8 GPa。通過(guò)實(shí)驗(yàn)與理論計(jì)算相結(jié)合,對(duì)疊氮芐的常壓拉曼光譜進(jìn)行完整的指認(rèn)。在0.67 GPa和2.7 GPa時(shí),疊氮芐分別發(fā)生一次構(gòu)象改變和一次結(jié)構(gòu)相變。構(gòu)象改變主要是由疊氮芐中的亞甲基旋轉(zhuǎn)引起的。2.7 GPa時(shí),拉曼峰呈現(xiàn)反常紅移現(xiàn)象,并且在XRD譜中出現(xiàn)一些衍射點(diǎn),同時(shí)原本屬于液態(tài)的衍射環(huán)消失,表明疊氮芐轉(zhuǎn)變成固態(tài),發(fā)生液固相變。高壓下,疊氮基受到亞甲基的影響而發(fā)生旋轉(zhuǎn),并在25.6 GPa時(shí)疊氮基分解。我們發(fā)現(xiàn)疊氮基的分解壓力點(diǎn)比疊氮根的分解壓力點(diǎn)要低,這可能有利于疊氮基在更低壓力下形成聚合氮。當(dāng)達(dá)到實(shí)驗(yàn)的最高壓力30.8 GPa時(shí),疊氮芐轉(zhuǎn)化為非晶態(tài)。其次,我們對(duì)磺酰疊氮化物4-乙酰氨基苯磺酰疊氮(4-ABSA)、4-羧基苯磺酰疊氮(4-CBSA)、4-對(duì)甲苯磺酰疊氮(4-Ts N3)分別進(jìn)行高壓拉曼散射、高壓紅外吸收和高壓同步輻射X光衍射實(shí)驗(yàn)。4-ABSA在0.8~2 GPa和4.2 GPa發(fā)生兩次結(jié)構(gòu)相變,在13GPa時(shí)轉(zhuǎn)變?yōu)榉蔷B(tài)。第一次相變是由于苯環(huán)變形和甲基旋轉(zhuǎn)造成的。第二次相變是由于甲基的扭曲和分子間氫鍵鍵能的改變。疊氮基在高壓下旋轉(zhuǎn)。4-CBSA在0.5 GPa和2.5~5.5 GPa的壓力范圍內(nèi)發(fā)生兩次結(jié)構(gòu)相變,在14.6 GPa時(shí)轉(zhuǎn)變?yōu)榉蔷B(tài)。由于分子構(gòu)象的改變使4-CBSA從相I變到相II,由于苯環(huán)的變形和分子間氫鍵的改變使4-CBSA從相II變到相III。疊氮基在壓力的作用下先彎折后旋轉(zhuǎn),到10.5 GPa時(shí)開(kāi)始分解。4-Ts N3在0.7 GPa、2.7 GPa、6.3 GPa發(fā)生三次結(jié)構(gòu)相變,在15.6 GPa時(shí)轉(zhuǎn)變?yōu)榉蔷B(tài)。第一次相變是由于C-H…?相互作用重排使晶體結(jié)構(gòu)的對(duì)稱性降低。第二次相變是由于4-Ts N3分子構(gòu)象發(fā)生改變。第三次相變是由磺;l(fā)生旋轉(zhuǎn)造成的,并且受到磺;挠绊,疊氮基發(fā)生彎折。最后,我們對(duì)疊氮三甲基錫烷(TMSn A)進(jìn)行高壓拉曼散射、高壓紅外吸收和高壓同步輻射X光衍射實(shí)驗(yàn),實(shí)驗(yàn)的最高壓力為35.2 GPa。常壓下,TMSn A中的疊氮基是直線型非對(duì)稱的,有著部分離子性和部分共價(jià)性的特點(diǎn)。在1.4 GPa時(shí),甲基的旋轉(zhuǎn)使分子內(nèi)有機(jī)基團(tuán)的相對(duì)位置發(fā)生微小的改變,引起TMSn A的第一次結(jié)構(gòu)相變。在6.6 GPa時(shí),由于甲基的變形造成晶格的扭曲使TMSn A發(fā)生第二次結(jié)構(gòu)相變,進(jìn)而造成疊氮基的對(duì)稱性降低,共價(jià)性增強(qiáng)而離子性減弱。疊氮基的這種特殊性質(zhì)可能使相鄰的疊氮基在足夠高的壓力下發(fā)生鍵合,從而發(fā)生氮聚合反應(yīng)。
[Abstract]:Energy is the material basis of human life, is the eternal subject of scientific research, the synthesis of high energy density materials has been a hot issue in the study of condensed state physics and material science. The pressure is the basic thermodynamic parameters independent of temperature and composition, can change the atomic arrangement and distribution of electronic states, causing the material structure. It is difficult to change, so under normal pressure synthetic materials under the action of pressure can be achieved. The single state of polymerization nitrogen for its high energy density (up to 38.4 K J/cm3) and clean product (nitrogen) become an important research field in physics. High pressure is an effective method for synthesis of polymeric nitrogen since. After the successful change of sodium azide in the 3300K and 120 GPa under the condition of single metastable state polymerization under atmospheric pressure nitrogen, azide become ideal polymer precursor synthesis under high pressure nitrogen. But the large Theoretical and Experimental Research on the amount of inorganic azides azide showed that under high pressure is not easy to bend, thus it is very difficult to track electronic hybrid, and high pressure nitrogen polymerization, which limits the practical application and scientific research. The organic azide as another important branch of azide, electronic structure and electronic structure the inorganic azido azides azide in different. This will make the different electronic structures of azido show high pressure behavior different from azide, it may be easier to form polymeric nitrogen, so as to reduce the occurrence of pressure nitrogen polymerization. This paper adopted a diamond anvil cell, using the High Pressure Raman scattering technology, X ray diffraction with synchrotron radiation infrared absorption and high pressure, high pressure on the system of three kinds of typical organic azides, explore the high-pressure structure transition and transformation type, reveals the stack The factors of nitrogen based high pressure behavior and affect the azido pressure behavior. First, we performed high-pressure Raman scattering and high pressure on the benzyl azide benzylazide synchrotron radiation X ray diffraction experiment, the highest pressure test is 30.8 GPa. by the combination of experiment and theoretical calculation, complete identify the Raman spectrum of atmospheric stack n benzyl. At 0.67 GPa and 2.7 GPa, respectively, benzylazide a conformational change and a structural phase transition. The conformational change is mainly caused by benzylazide caused by the rotating.2.7 GPa methylene, the Raman peaks exhibit anomalous redshift, and some diffraction point appeared in the XRD spectrum, diffraction ring at the same time belong to the original liquid disappears, indicates the transformation of benzylazide into solid liquid solid phase transition. Under high pressure, azido methylene caused by rotation, and in 25.6 GPa azido decomposition. We found the azido branch The pressure point is lower than the decomposition pressure of azide, it may be beneficial to the formation of azido nitrogen polymer at lower pressure. When the pressure reaches the highest at 30.8 GPa, benzylazide into amorphous. Secondly, we of sulfonyl azide 4- p-acetamido benzene sulfonyl azide (4-ABSA 4-), carboxyl benzene sulfonyl azide (4-CBSA), 4- toluene-4-sulfonyl azide (4-Ts N3) were high pressure Raman scattering, two phase transition occurs at 0.8~2 GPa and 4.2 GPa high pressure infrared absorption and high pressure synchrotron radiation X ray diffraction experiment.4-ABSA, when 13GPa was transformed into amorphous first. Phase change is due to deformation caused by the rotation of the benzene and methyl. The second phase is due to distortions and molecular methyl hydrogen bonding energy. The change of azide under high pressure rotating.4-CBSA in the pressure range of 0.5 GPa and 2.5~5.5 GPa in the two structural phase transition at 14.6 GPa, non Due to the molecular conformational change of crystalline. The 4-CBSA from I to II phase, due to deformation and molecular hydrogen bonds between the benzene ring changed from 4-CBSA to III. phase II phase azide under the pressure of the first bending rotation to 10.5 GPa when.4-Ts N3 began to decompose at 0.7 GPa, 2.7 GPa 6.3, GPa three phase transition at 15.6 GPa into amorphous state. The first phase is due to C-H... ? interaction reduces the rearrangement of the symmetry of crystal structure. The second phase is due to the 4-Ts N3 molecular conformation changed. The third phase is composed of sulfonyl occurrence caused by rotation, and is influenced by sulfonyl azide, bend. Finally, we three methyl tin alkyl azide (TMSn A) High Pressure Raman scattering, infrared absorption and high pressure synchrotron radiation X ray diffraction experiment, the highest pressure experiment was 35.2 GPa. under normal pressure, TMSn A azide is linear asymmetric, with characteristics of ionic and covalent properties. In 1.4 GPa, the relative position of methyl rotation. Intramolecular organic groups changed slightly, causing the first structural phase transition of TMSn A. At 6.6 GPa, due to the lattice distortion caused by the deformation of methyl TMSn A second structural phase transition, which caused the symmetry of azido decreasing covalency The special properties of the azido group may make the adjacent azido groups bonding at high enough pressure, so that the nitrogen polymerization will occur.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O521
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 諸平;多疊氮化物引人注目[J];寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2004年03期
2 王乃興;碳-60與疊氮化物反應(yīng)控制探析(英文)[J];寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版);1999年02期
3 方樂(lè)平,吳華悅;一種簡(jiǎn)便的合成脒的新方法[J];浙江師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2003年03期
4 王乃興,李紀(jì)生,朱道本;C_60和對(duì)硝基疊氮芐的反應(yīng)研究[J];科學(xué)通報(bào);1994年20期
5 朱麗萍,葉志鎮(zhèn);不同堿金屬疊氮化物對(duì)層狀晶體β-MNCl(M=Zr,Hf)電子摻雜的影響[J];化學(xué)物理學(xué)報(bào);2005年03期
相關(guān)會(huì)議論文 前1條
1 韓波;高艷妮;馬小燕;石先瑩;魏俊發(fā);;1,4,5,8,9,12-六疊氮十二氫苯并[9,10]菲的合成[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第06分會(huì)場(chǎng)摘要集[C];2010年
相關(guān)博士學(xué)位論文 前4條
1 周向同;微生物燃料電池去除疊氮化物和氨氮的特性與機(jī)制[D];哈爾濱工業(yè)大學(xué);2016年
2 李冬梅;堿金屬疊氮化物和疊氮化銀的高壓研究[D];吉林大學(xué);2017年
3 江俊儒;幾種典型有機(jī)疊氮化物的高壓研究[D];吉林大學(xué);2017年
4 武曉鑫;疊氮化銨以及堿土金屬疊氮化物的高壓研究[D];吉林大學(xué);2015年
相關(guān)碩士學(xué)位論文 前1條
1 霍瑞萍;Lewis酸催化有機(jī)腈和疊氮化物合成5-取代四唑機(jī)理的理論研究[D];山西師范大學(xué);2010年
,本文編號(hào):1396023
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1396023.html