高雙折射光纖環(huán)形鏡傳感信號(hào)解調(diào)方法及應(yīng)用研究
本文關(guān)鍵詞:高雙折射光纖環(huán)形鏡傳感信號(hào)解調(diào)方法及應(yīng)用研究 出處:《安徽大學(xué)》2016年博士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 高雙折射光纖環(huán)形鏡 應(yīng)力型高雙折射光纖 解調(diào)方法 拍長(zhǎng)測(cè)量 溫度傳感 折射率傳感
【摘要】:基于高雙折射光纖環(huán)形鏡結(jié)構(gòu)的傳感器具有自身組成簡(jiǎn)單、傳輸回路穩(wěn)定、對(duì)光源偏振不敏感等優(yōu)勢(shì),其傳感信號(hào)解調(diào)精度高,是光纖傳感領(lǐng)域中極具發(fā)展?jié)摿Φ囊活?lèi)傳感器。論文重點(diǎn)研究了高雙折射光纖環(huán)形鏡傳感信號(hào)解調(diào)方法及其應(yīng)用,基于輸出光譜中相鄰極小值波長(zhǎng),提出干涉級(jí)數(shù)測(cè)量方法。該方法和傳統(tǒng)傳感解調(diào)方法相比,解決了量程小、只能進(jìn)行相對(duì)值測(cè)量等問(wèn)題,實(shí)現(xiàn)了高精度、大量程、絕對(duì)值測(cè)量。論文探討了該方法的適用范圍,并將其成功應(yīng)用在光纖拍長(zhǎng)測(cè)量、溫度傳感和折射率傳感等方面,具體內(nèi)容如下:(1)針對(duì)現(xiàn)有高雙折射光纖環(huán)形鏡傳感信號(hào)解調(diào)方法量程小、只能進(jìn)行相對(duì)值測(cè)量等不足,我們提出一種基于干涉光譜相鄰極小值波長(zhǎng)測(cè)量的信號(hào)解調(diào)方法,簡(jiǎn)稱“干涉級(jí)數(shù)測(cè)量法”。該方法依據(jù)相鄰極小值波長(zhǎng)計(jì)算出極值所在的干涉級(jí)數(shù),利用該干涉級(jí)數(shù)為整數(shù)的基本屬性可消除因光譜讀數(shù)而引入的誤差。根據(jù)干涉級(jí)數(shù)實(shí)現(xiàn)對(duì)高雙折射光纖正交偏振模干涉相位差絕對(duì)值的測(cè)量,利用該相位差和外界參量的變化關(guān)系實(shí)現(xiàn)對(duì)傳感信號(hào)的解調(diào)。論文分析了此方法的誤差特征,并提出該方法有效工作的判據(jù)方程。(2)利用干涉級(jí)數(shù)測(cè)量法,開(kāi)展了對(duì)高雙折射光纖拍長(zhǎng)測(cè)量的研究。該方法的拍長(zhǎng)測(cè)量精度只與待測(cè)光纖長(zhǎng)度測(cè)量精度有關(guān),與光譜測(cè)量精度無(wú)關(guān),克服了傳統(tǒng)寬帶光源測(cè)量方法中光譜讀數(shù)誤差的影響,具有測(cè)量精度更高、穩(wěn)定性更好,方法更簡(jiǎn)單等優(yōu)勢(shì)。論文依據(jù)上述方法對(duì)熊貓型光纖拍長(zhǎng)測(cè)量進(jìn)行了數(shù)值模擬和實(shí)驗(yàn)研究,結(jié)果表明,拍長(zhǎng)的測(cè)量不確定度優(yōu)于0.001mm,與理論分析一致。和現(xiàn)有達(dá)到類(lèi)似測(cè)量精度的方法相比,論文所建立的拍長(zhǎng)測(cè)量方法更簡(jiǎn)單、對(duì)測(cè)量設(shè)備的要求更低。(3)利用干涉級(jí)數(shù)測(cè)量法,對(duì)應(yīng)力型高雙折射光纖環(huán)形鏡的溫度傳感進(jìn)行了研究,對(duì)比了光譜移動(dòng)法、干涉級(jí)數(shù)測(cè)量法等信號(hào)解調(diào)方法各自的特點(diǎn),干涉級(jí)數(shù)測(cè)量法可實(shí)現(xiàn)大量程、絕對(duì)值測(cè)量,其測(cè)量精度與光譜移動(dòng)法相同。實(shí)驗(yàn)實(shí)現(xiàn)了30℃-350℃變化范圍的測(cè)量,實(shí)際測(cè)得了干涉光譜中干涉級(jí)數(shù),確定了干涉相位差與溫度變化之間的關(guān)系,溫度測(cè)量靈敏度為0.20 rad/℃,分辨率為0.04℃,不確定度為0.09℃。實(shí)驗(yàn)結(jié)果與理論分析一致,傳感量程在已知文獻(xiàn)類(lèi)似傳感器中是最大的。(4)利用干涉級(jí)數(shù)測(cè)量法,對(duì)應(yīng)力型高雙折射光纖環(huán)形鏡在折射率方面的測(cè)量進(jìn)行了研究。實(shí)驗(yàn)中采用化學(xué)刻蝕工藝對(duì)熊貓型光纖進(jìn)行了徑向刻蝕,利用干涉級(jí)數(shù)測(cè)量法實(shí)現(xiàn)了光纖刻蝕過(guò)程在線精確控制,得到了一種對(duì)外界折射率有強(qiáng)依賴性的應(yīng)力區(qū)缺失結(jié)構(gòu)光纖,獲得了456nm/RIU的傳感靈敏度,分辨率為4.4X10-5。此在線精密控制方法解決了傳統(tǒng)工藝中依靠刻蝕時(shí)間、氫氟酸濃度控制而導(dǎo)致刻蝕重復(fù)性不好的問(wèn)題。論文對(duì)基于高雙折射光纖環(huán)形鏡結(jié)構(gòu)的傳感器信號(hào)解調(diào)方法進(jìn)行了系統(tǒng)研究,提出了干涉級(jí)數(shù)測(cè)量法,并將之用于拍長(zhǎng)測(cè)量、溫度傳感、折射率傳感等,為此類(lèi)傳感器的廣泛應(yīng)用提供了一種新穎的解調(diào)方法。
[Abstract]:The sensor of high birefringence fiber loop mirror structure has its simple structure based on transmission loop stability and polarization of the light is not sensitive to the advantages of the demodulation precision is high, is a kind of sensor has great potential for development in the field of optical fiber sensing. This paper focuses on the high birefringence fiber loop mirror sensing signal demodulation method and its application. The wavelength spectrum based on the minimum output, this series interference measuring method. Compared to the traditional method and sensor demodulation method, solves the small range, only the relative value measurement and other issues, to achieve high precision, large range, absolute value measurement. This paper discusses the scope of the method, and successfully applied in fiber beat length measurement, temperature sensor and refractive index sensing etc., the specific contents are as follows: (1) according to the range of existing high birefringence fiber loop mirror sensing signal demodulation method is small, only Can the relative value measurement problems, we propose a signal demodulation method for wavelength measurement of interference spectrum based on the minimum value of the adjacent, referred to as "series interference measurement method. The method based on the minimum wavelength to calculate the adjacent interference series extreme where the use of the basic properties of integer series interference can eliminate the error caused by the spectrum reading. According to the interference measurement series phase difference of the absolute value of high birefringence fiber orthogonal polarization mode, the relationship between the phase difference and the external parameters to demodulate the sensing signal. This paper analyzes the error characteristics of this method, the criterion equation and put forward the effective work of the method. (2) the use of interference series of measurements, carried out the research on the high birefringence fiber beat length measurement. The beat length measurement accuracy of this method is only related to fiber length measurement precision to be measured, and the spectral measurement precision Regardless of their degree, overcome the influence of spectral reading error of the traditional broadband light source measurement method, has higher precision, better stability, simpler methods and other advantages. Based on the method of PANDA fiber beat length measurement are studied by numerical simulation and experiment, the results show that the uncertainty is better than 0.001mm beat length measurement. Consistent with the theoretical analysis. Compared with the existing similar methods to the measurement precision of beat length measurement method in the paper is more simple, the measurement equipment requirements lower. (3) using series interference measuring method, temperature sensing stress type high birefringence fiber loop mirror is studied, comparing the spectral shift method. The characteristics of interference series measurement signal demodulation method of the interference measurement series method can realize large range, absolute value measurement, the measurement accuracy and spectral analysis. The same experiment achieved a 30 DEG -350 DEG variable The measurement range of the actual measured spectral interference in the series, the relationship between interference phase difference and the change of temperature to determine the temperature measurement sensitivity is 0.20 rad/ C, resolution 0.04 C, uncertainty is 0.09 degrees centigrade. The experimental results agree with the theoretical analysis, the sensing range is the largest in the known literature similar sensors. (4) using series interference measurement method, the stress of high birefringence fiber loop mirror in refractive index measurement were studied. Experiment by chemical etching process of PANDA fiber of radial etching, the interference level measuring method to realize accurate control of optical line etching process and get a the strong dependence of the stress area lack of structure of optical fiber to external refractive index, the sensitivity of 456nm/RIU, resolution of precision control method of the online 4.4X10-5. to solve the traditional process by etching Time, HF concentration control causes the etching reproducibility problems. This paper made a systematic research on sensor signal demodulation method of high birefringence fiber loop mirror based on the structure of the proposed interference series measurement method, and used to beat length measurement, temperature sensing, refractive index sensing, provides a novel the demodulation method for wide application of such sensors.
【學(xué)位授予單位】:安徽大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TN911.3;TN253
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋宏偉;于陽(yáng);;高雙折射光纖環(huán)鏡在光纖傳感解調(diào)系統(tǒng)中的應(yīng)用[J];寧波職業(yè)技術(shù)學(xué)院學(xué)報(bào);2013年01期
2 宋宏偉;于陽(yáng);;高雙折射光纖環(huán)鏡在光纖傳感解調(diào)系統(tǒng)中的應(yīng)用[J];晉城職業(yè)技術(shù)學(xué)院學(xué)報(bào);2013年02期
3 江鶯;梁大開(kāi);曾捷;張曉麗;周麗;倪曉宇;;高雙折射光纖環(huán)鏡軸向應(yīng)變靈敏度研究[J];光譜學(xué)與光譜分析;2012年12期
4 金振洪,黃肇明,肖維年;高雙折射光纖偏振耦合器[J];應(yīng)用科學(xué)學(xué)報(bào);1993年02期
5 周廣,趙啟大,開(kāi)桂云,董孝義,何士雅;利用高雙折射光纖環(huán)鏡的邊緣濾波解調(diào)方法[J];光電子·激光;2003年12期
6 曹曄;李榮敏;童崢嶸;楊秀峰;;高雙折射光子晶體光纖及其傳感研究進(jìn)展[J];光通信技術(shù);2012年02期
7 郭青,錢(qián)景仁;扭轉(zhuǎn)高雙折射光纖扭轉(zhuǎn)比的測(cè)量及光軸的確定(英文)[J];中國(guó)科學(xué)技術(shù)大學(xué)學(xué)報(bào);1991年04期
8 楊廣強(qiáng),張霞,林健飛,宋繼恩,黃永清,任曉敏;高雙折射光子晶體光纖偏振模色散測(cè)量[J];光子學(xué)報(bào);2005年08期
9 周書(shū)銓,楊耀鑫,左曉路,周豐年;高雙折射單模光纖溫度傳感器[J];中國(guó)激光;1993年07期
10 王靜;張晨芳;康澤新;孫將;鄭斯文;林楨;王春燦;簡(jiǎn)水生;;多偏振控制高雙折射光纖環(huán)形鏡輸出特性的理論和實(shí)驗(yàn)研究[J];物理學(xué)報(bào);2011年12期
相關(guān)會(huì)議論文 前4條
1 黃勇林;;高雙折射光纖Sagnac環(huán)形鏡濾波器的溫度穩(wěn)定性研究[A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
2 賈維國(guó);喬麗榮;楊軍;張俊萍;門(mén)克內(nèi)木樂(lè);;高階色散對(duì)高雙折射光纖中增益譜的影響[A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
3 張曉萍;譚志紅;;雙包層高雙折射光纖偏振特性研究[A];全國(guó)第十次光纖通信暨第十一屆集成光學(xué)學(xué)術(shù)會(huì)議(OFCIO’2001)論文集[C];2001年
4 王豆豆;王麗莉;;低損耗高雙折射太赫茲Topas光子帶隙光纖[A];2013年(第五屆)西部光子學(xué)學(xué)術(shù)會(huì)議論文集[C];2013年
相關(guān)博士學(xué)位論文 前2條
1 朱軍;高雙折射光纖環(huán)形鏡傳感信號(hào)解調(diào)方法及應(yīng)用研究[D];安徽大學(xué);2016年
2 麻碩;基于高雙折射光子晶體光纖模間干涉的光學(xué)電壓互感器研究[D];燕山大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 何川;基于高雙折射光纖環(huán)鏡的光纖布拉格光柵波分復(fù)用解調(diào)儀[D];北京工業(yè)大學(xué);2015年
2 張潯;基于高雙折射光纖Sagnac干涉儀的光纖光柵波長(zhǎng)解調(diào)系統(tǒng)研究[D];北京工業(yè)大學(xué);2016年
3 劉峰;扭轉(zhuǎn)型高雙折射光纖應(yīng)用及制備的研究[D];浙江大學(xué);2016年
4 白冬梅;基于高雙折射光纖鏡的光纖布格光柵解調(diào)技術(shù)研究[D];北京工業(yè)大學(xué);2014年
5 方偉;基于高雙折射光纖環(huán)境的波長(zhǎng)交錯(cuò)器研究[D];天津理工大學(xué);2007年
6 李海蘭;高雙折射Sagnac環(huán)濾波特性的研究[D];江西師范大學(xué);2011年
7 齊璽娟;基于高雙折射PCF模間干涉的波長(zhǎng)解調(diào)系統(tǒng)方案研究[D];燕山大學(xué);2013年
8 王靜;基于磁流體與高雙折射環(huán)形鏡的光纖磁場(chǎng)傳感器研究[D];武漢理工大學(xué);2014年
9 馮彩霞;基于高雙折射光纖Sagnac環(huán)的可調(diào)諧梳狀濾波器研究[D];北京交通大學(xué);2009年
10 康夢(mèng)華;基于扭轉(zhuǎn)高雙折射光纖的電流傳感器的設(shè)計(jì)與理論研究[D];中國(guó)科學(xué)院研究生院(西安光學(xué)精密機(jī)械研究所);2014年
,本文編號(hào):1359808
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/1359808.html