天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

基于葵花籽蛋白水解物美拉德反應(yīng)產(chǎn)物制備的風(fēng)味增強(qiáng)劑及其感官特性和抗氧化活性

發(fā)布時(shí)間:2017-07-30 13:01

  本文關(guān)鍵詞:基于葵花籽蛋白水解物美拉德反應(yīng)產(chǎn)物制備的風(fēng)味增強(qiáng)劑及其感官特性和抗氧化活性


  更多相關(guān)文章: 向日葵肽 糖型 基料類型 溫度 美拉德反應(yīng)產(chǎn)物 厚味效應(yīng) 偏最小二乘回歸 交聯(lián)產(chǎn)物 抗氧化和抗菌活性


【摘要】:向日葵(Helianthus annuus L.)是種植在世界上最重要的油籽作物之一,相對(duì)于油脂產(chǎn)量居全國(guó)第四位。脫脂粉是榨油后的主要副產(chǎn)品。這種脫脂粉,約含40-45%的蛋白質(zhì),可能是人類獲取蛋白質(zhì)最佳來源。向日葵蛋白質(zhì)的技術(shù)-功能特性可與大豆和其他豆類蛋白相媲美。盡管從營(yíng)養(yǎng)學(xué)的角度來看賴氨酸缺乏是一個(gè)主要缺點(diǎn),但由于它低抗?fàn)I養(yǎng)化合物和不含有毒物質(zhì),葵花籽粕蛋白被認(rèn)為是一種有價(jià)值的食品成分替代物。向日葵蛋白水解物能依次用內(nèi)切蛋白酶(堿性蛋白酶)和外切蛋白酶(風(fēng)味蛋白酶)獲得,他們能以很高的營(yíng)養(yǎng)價(jià)值被使用于食品行業(yè)。另一方面,美拉德反應(yīng)技術(shù)最近已用于進(jìn)一步改善蛋白質(zhì)水解產(chǎn)物的物理化學(xué)性質(zhì)以及感官特性。這一研究過程中酶法水解和美拉德反應(yīng)技術(shù)的結(jié)合可以進(jìn)一步提高葵花蛋白的附加值及其在食品行業(yè)的利用率。這項(xiàng)研究的第一階段是酶法制備葵花蛋白水解物的工藝優(yōu)化。分析表明,葵花籽粕的蛋白質(zhì)含量為43.66%。在酶解之前,蛋白質(zhì)含量是通過制備向日葵蛋白分離物提升。向日葵蛋白分離物中的蛋白含量從43.66%上升到72.50%。使用堿性蛋白酶(內(nèi)肽酶)和復(fù)合風(fēng)味蛋白酶分步酶解生產(chǎn)向日葵蛋白質(zhì)水解產(chǎn)物的最佳條件是,2小時(shí)堿性蛋白酶和2小時(shí)復(fù)合風(fēng)味蛋白酶水解足以產(chǎn)生無苦味葵花蛋白水解物。因此,可以得出結(jié)論,水解葵花籽粕蛋白質(zhì)最佳的加工條件如下:堿性蛋白酶[E/S]0.6%(w/w)在58℃,p H值8,2小時(shí)和風(fēng)味蛋白酶[E/S]0.4%(w/w)在50℃下,2小時(shí)p H為6.5。在最佳條件下的蛋白質(zhì)含量提高到92.32%。在研究的下一階段,對(duì)不同類型的糖對(duì)向日葵蛋白質(zhì)水解物的美拉德反應(yīng)產(chǎn)物(MRPs)的感官特性的影響進(jìn)行了評(píng)價(jià)與比較(果糖,葡萄糖,半乳糖,木糖,乳糖,麥芽糖)。結(jié)果表明,MRPs的褐變強(qiáng)度,顏色形成和游離及總氨基酸受糖類型和糖類反應(yīng)活性范圍的影響極大。為戊糖己糖雙糖。PXC棕色更暗,相比于其他MRPs,FAA和TAA含量更低。然而,肽-木糖-半胱氨酸(PXC)MRPs表現(xiàn)出了極大醇厚味和連續(xù)性和更強(qiáng)的肉香味及鮮味,相比于其他類型的糖制成的MRPs。除PGa C外的己糖制得的MRPs,表現(xiàn)出接受性強(qiáng)的醇厚味和連續(xù)性,而PLC和PMC和PGa C表現(xiàn)出較高的焦糖味和苦味。據(jù)觀察,在所有的MRPs中,半胱氨酸的加入加速了高分子量(HMW)的肽降解,同時(shí)抑制了低分子量(LMW)肽的交聯(lián)和顏色的形成。此外,戊糖(木糖)是含硫化合物的前體,所有的單糖相比于雙糖是含氮化合物的良好來源。此外,二糖有助于呋喃和含氧化合物的形成。因此得出的結(jié)論是向日葵肽,木糖,半胱氨酸模型體系是香味增強(qiáng)劑的一個(gè)良好的前體,具有更強(qiáng)的“醇厚味”的效果。本文以向日葵的游離氨基酸和多肽為基料,比較研究了這兩種物質(zhì)的美拉德反應(yīng)產(chǎn)物(MRPs)的感官特性和抗氧化能力,研究結(jié)果表明,AXC具有較濃郁的肉香味和鮮味,而PXC則具有突出的醇厚味和持續(xù)感,同時(shí)AX和PX表現(xiàn)出了較強(qiáng)的焦糖味和苦味。研究發(fā)現(xiàn),添加半胱氨酸可以促進(jìn)大分子的肽類降解,同時(shí)抑制小分子在PXC和AXC中的交聯(lián)和顏色的形成。此外,還發(fā)現(xiàn)MRPs的感官屬性與肽類的大小無顯著相關(guān)性。結(jié)果還表明,焦糖味和苦味與呋喃類和大部分含氮化合物呈顯著正相關(guān),而這些化合物與醇厚味、持續(xù)感和肉香味則呈現(xiàn)顯著負(fù)相關(guān)。此外,含硫化合物與肉香味呈顯著正相關(guān),而PXC和PX較AXC和AX具有更高抗氧化能力。因此,向日葵多肽的MRPs可以作為一種較好的具抗氧化活性的增味劑前體,而向日葵游離氨基酸的MRPs可用于生產(chǎn)肉香味的增味劑。在研究的下一階段,溫度和半胱氨酸的添加對(duì)向日葵蛋白質(zhì)美拉德反應(yīng)產(chǎn)物的感官特性的影響顯示,在120℃下,半胱氨酸添加量(PXC-120)制得的MRPs具有更大的肉香味,醇厚味和連續(xù)性相比其他的MRPs。分子量分布表明,隨著溫度的升高,半胱氨酸的存在抑制了低分子量(LMW)的肽交聯(lián),但加速了高分子量(HMW)的肽降解。此外,結(jié)果顯示,分子大于5 k Da的肽對(duì)PXCs的感官屬性顯著負(fù)相關(guān),而分子量1至5 k Da的肽對(duì)PX感官屬性呈正相關(guān)但不顯著。含硫化合物對(duì)PXCs的感官屬性呈顯著正相關(guān)性,而含氮化合物和呋喃是對(duì)PXCs的感官屬性顯著負(fù)相關(guān)。在接下來的研究中,比較評(píng)價(jià)了向日葵的蛋白水解物-木糖-L-半胱氨酸模式體系(PXC)的美拉德產(chǎn)物(MRPs),與大豆美拉德產(chǎn)物(MSP)的感官屬性和抗氧化能力。結(jié)果表明,PXC表現(xiàn)出較強(qiáng)的抗氧化作用(p0.001),還原能力和DPPH自由基清除活性高于MSP(分別為在3mg/m L時(shí),0.689比0.667,和在1mg/m L時(shí),95.06%比90.73%)。此外,感官屬性表明,與MSP相比,PXC具有較強(qiáng)的醇厚味和持續(xù)感,這是由于MSP中1-5k Da分子量的美拉德肽的含量更高(18.05%比16.01%),同時(shí)也具有硫取代呋喃產(chǎn)生的肉香味以及較好的整體可接受性。因此,向日葵的MRPs可以作為大豆的MRPs替代物,用于生產(chǎn)具有高抗氧化活性的增味劑。在進(jìn)一步的研究中,考察了交聯(lián)產(chǎn)物在增味劑加工過程中的貢獻(xiàn)。向日葵肽、玉米肽和大豆肽(SFP、CP、SP)被用于制備美拉德體系,分別名為PXC、MCP和MSP。研究顯示,所有的感官屬性都具有顯著性差異,醇厚味和持續(xù)感得分最高的都在美拉德肽含量(1-5k Da)最低的MCP體系中。這個(gè)結(jié)果表明,與其它MRPs相比,美拉德肽含量最低的MCP體系,具有最強(qiáng)的“厚味效應(yīng)”,這證明了MRPs的“厚味效應(yīng)”不僅限與由分子量大小(1-5k Da)定義的“美拉德肽”的相關(guān)。對(duì)酶解后的PXC分餾物進(jìn)行感官評(píng)價(jià),結(jié)果顯示,在PXC、P-PXC和它們的水解產(chǎn)物之間不存在顯著性差異。因此這項(xiàng)觀察結(jié)果證實(shí)了以上成分對(duì)“厚味”效應(yīng)的貢獻(xiàn),推測(cè)不水解的交聯(lián)產(chǎn)物可能有助于MRPs產(chǎn)生“厚味”效應(yīng)。提出了四種可能的交聯(lián)化合物的結(jié)構(gòu),這些研究結(jié)果提供了關(guān)于木糖、半胱氨酸和向日葵肽MRPs感官特性的新見解。本研究的最后一部分,是研究關(guān)于向日葵作為天然的抗油氧化劑,在魚油和橄欖油納米乳中的應(yīng)用,研究的條件為將O/W型的納米乳液儲(chǔ)存與于40°C的加速條件下4周。結(jié)果表明,在經(jīng)過美拉德反應(yīng)后,向日葵蛋白水解物的抗氧化和抗菌活性都得到了提升。納米乳的表征結(jié)果表明,在40°C的條件下儲(chǔ)存28天,橄欖油的O/W型納米乳比于魚油的O/W型納米乳更穩(wěn)定。將向日葵作為天然抗氧化劑應(yīng)用于O/W型納米乳,結(jié)果顯示在儲(chǔ)存28天后,與BHT相比,450 mg/100m L濃度的PXC足以抑制對(duì)魚油和橄欖油的初級(jí)和次級(jí)氧化。由此得出結(jié)論,向日葵蛋白水解產(chǎn)物的MRPs可作為一種天然抗氧化劑用于抑制油脂氧化。
【關(guān)鍵詞】:向日葵肽 糖型 基料類型 溫度 美拉德反應(yīng)產(chǎn)物 厚味效應(yīng) 偏最小二乘回歸 交聯(lián)產(chǎn)物 抗氧化和抗菌活性
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TS201.2
【目錄】:
  • Dedication4-10
  • List of Abbreviations10-13
  • 摘要13-16
  • Abstract16-28
  • Chapter 1. Introduction and Review of Relevant Literature28-54
  • 1.1. Sunflower28-31
  • 1.1.1. Food applications of sunflower seed28-29
  • 1.1.2. By-products from processing of sunflower oil29
  • 1.1.3. Composition of Sunflower meal (SFM)29-30
  • 1.1.4. Sunflower protein hydrolysates30-31
  • 1.2. Maillard reaction31-42
  • 1.2.1. Impact of Maillard on food quality32
  • 1.2.2. Formation of flavour compounds in the Maillard reaction32-34
  • 1.2.3. Classification of flavour compounds from Maillard reaction34-35
  • 1.2.4. Factors influencing the flavour formation during Maillard reaction35-39
  • 1.2.5. Analysis of flavours39-40
  • 1.2.6. Application of Maillard reaction products in food industries40-42
  • 1.3. Statement of the problem and justification of research42-43
  • 1.4. Objectives of the study43
  • 1.4.1. Main objective of the study43
  • 1.4.2. Specific objectives of the study43
  • 1.5. References43-54
  • Chapter 2. Optimization of Processing Parameters for Enzymatic Hydrolysis of SunflowerProteins54-65
  • 2.1. Introduction54-55
  • 2.2. Material and Methods55-57
  • 2.2.1. Plant material55
  • 2.2.2. Chemicals55
  • 2.2.3. Preparation of sunflower protein isolate55
  • 2.2.4. Physico-chemical analysis methods55-56
  • 2.2.5. Total and free amino acid determination56-57
  • 2.2.6. Estimation of molecular weight distribution57
  • 2.2.7. Statistical analysis57
  • 2.3. Results and Discussions57-62
  • 2.3.1. Proximate analysis57-58
  • 2.3.2. Effect of alcalase concentration on the degree of hydrolysis58
  • 2.3.3. Effect of hydrolysis time and substrates concentration on the degree of hydrolysis58-59
  • 2.3.4. Effect of alcalase enzyme hydrolysis and substrates concentration of molecular weightdistribution59
  • 2.3.5. Effect of alcalase hydrolysis and substrates concentration on total amino acid content ofsunflower protein hydrolysates59-60
  • 2.3.6. Effect of alcalase hydrolysis and substrates concentration on total amino acid content ofsunflower protein hydrolysates60
  • 2.3.7. Effect of sequential enzymatic hydrolysis and substrates concentration on DH and molecularweight distribution60-62
  • 2.4. Conclusion62-63
  • 2.5. References63-65
  • Chapter 3. Sensory Characteristics of Maillard Reaction Products Obtained from SunflowerProtein Hydrolysates and Different Sugar Type65-91
  • 3.1. Introduction65-66
  • 3.2. MATERIALS and Methods66-70
  • 3.2.1. Plant material66
  • 3.2.2. Chemicals66-67
  • 3.2.3. Preparation of sunflower protein isolate67
  • 3.2.4. Preparation of sunflower hydrolysates67
  • 3.2.5. Preparation of Maillard reaction products67
  • 3.2.6. Measurement of p H67
  • 3.2.7. Measurement of browning intensity67
  • 3.2.8. Colour measurement67-68
  • 3.2.9. Headspace solid phase micro-extraction/ gas chromatography/ mass spectrometry (HS-SPME/GC/MS) analysis68
  • 3.2.10. Total and free amino acid determination68
  • 3.2.11. Estimation of molecular weight distribution68-69
  • 3.2.12. Sensory evaluation69
  • 3.2.13. Statistical analysis69-70
  • 3.3. Result and discussions70-85
  • 3.3.1. Effect of sugar types on MRPs p H70-71
  • 3.3.2. Effect of sugar types on MRPs browning intensity and colour development71
  • 3.3.3. Effect of sugar types on Molecular Weight Distribution of MRPs71-73
  • 3.3.4. Effect of sugar types on MRPs free and total amino acid content73-75
  • 3.3.5. Effect of sugar types on volatile compounds formation75-79
  • 3.3.6. Effect of sugar types on MRPs sensory characteristics79-85
  • 3.4. Conclusion85-86
  • 3.5. References86-91
  • Chapter 4 Effect of Substrate Type on Sensory Characteristics and Antioxidant Capacity of Sunflower Maillard Reaction Products91-120
  • 4.1. Introduction91-92
  • 4.2. Materials and Methods92-95
  • 4.2.1. Plant material92
  • 4.2.2. Chemicals92-93
  • 4.2.3. Preparation of sunflower protein isolate93
  • 4.2.4. Preparation of sunflower hydrolysates93
  • 4.2.5. Preparation of sunflower free amino acid93
  • 4.2.6. Preparation of Maillard reaction products93
  • 4.2.7. Measurement of browning intensity93
  • 4.2.8. Colour measurement93-94
  • 4.2.9. Headspace solid phase micro-extraction/ gas chromatography/ mass spectrometry (HS-SPME/GC/MS) analysis94
  • 4.2.10. Total and free amino acid determination94
  • 4.2.11. Estimation of molecular weight distribution94
  • 4.2.12. Determination of DPPH radical-scavenging activity94
  • 4.2.13. Determination of the reducing power94-95
  • 4.2.14. Sensory evaluation95
  • 4.2.15. Statistical analysis95
  • 4.3. Results and Discussions95-114
  • 4.3.1. Browning intensity and colour changes95-96
  • 4.3.2. Change in Molecular Weight Distribution96-97
  • 4.3.3. Change in Amino Acid Content97-99
  • 4.3.4. Sensory analysis99-101
  • 4.3.5. Compare volatile compounds of MRPs101-108
  • 4.3.6. Relationship between Molecular weight, volatile compounds and sensory characteristics108-113
  • 4.3.7. Evaluation of antioxidant activity113-114
  • 4.4. Conclusions114-115
  • 4.5. References115-120
  • Chapter 5. Temperature and Cysteine Addition Effect on Formation of Sunflower Hydrolysate Maillard Reaction Products and Corresponding Influence on Sensory Characteristics Assessedby Partial Least Square Regression120-152
  • 5.1. Introduction120-122
  • 5.2. Materials and Methods122-125
  • 5.2.1. Plant material122
  • 5.2.2. Chemicals122
  • 5.2.3. Preparation of sunflower isolates and hydrolysates122
  • 5.2.4. Preparation of Maillard reaction products122-123
  • 5.2.5. Measurement of p H123
  • 5.2.6. Measurement of browning intensity123
  • 5.2.7. Chlorogenic acid determination123-124
  • 5.2.8. Colour measurement124
  • 5.2.9. Headspace solid phase micro-extraction/ gas chromatography/ mass spectrometry (HS-SPME/GC/MS) analysis124
  • 5.2.10. Total and free amino acid determination124
  • 5.2.11. Estimation of molecular weight distribution124
  • 5.2.12. Determination of DPPH radical-scavenging activity124
  • 5.2.13. Determination of the reducing power124-125
  • 5.2.14. Sensory evaluation125
  • 5.2.15. Statistical analysis125
  • 5.3. Results and Discussions125-147
  • 5.3.1. Change in p H125-126
  • 5.3.2. Chlorogenic acid content126
  • 5.3.3. Effect on browning and lightness intensity of MRPs126-127
  • 5.3.4. Peptide content127-129
  • 5.3.5. Amino acid content129-130
  • 5.3.6. Volatile compound formation130-132
  • 5.3.7. Sensory evaluation132-133
  • 5.3.8. Relationship between molecular weight, free amino acid, flavour compounds and sensorycharacteristics133-139
  • 5.3.9. Effect of temperature and cysteine addition on antioxidant activity139-147
  • 5.4. Conclusions147
  • 5.5. References147-152
  • Chapter 6. Sensory Attributes and Antioxidant Capacity of Maillard Reaction ProductsDerived from Xylose, Cysteine and Sunflower Protein Hydrolysate Model System152-174
  • 6.1. Introduction152-153
  • 6.2. Materials and Methods153-156
  • 6.2.1. Plant material153
  • 6.2.2. Chemicals153-154
  • 6.2.3. Preparation of sunflower isolates and hydrolysates154
  • 6.2.4. Preparation of soybean hydrolysates154
  • 6.2.5. Preparation of Maillard reaction products154
  • 6.2.6. Measurement of p H154-155
  • 6.2.7. Measurement of browning intensity155
  • 6.2.8. Chlorogenic acid determination155
  • 6.2.9. Colour measurement155
  • 6.2.10. Headspace solid phase micro-extraction/ gas chromatography/ mass spectrometry (HS-SPME/GC/MS) analysis155
  • 6.2.11. Total and free amino acid determination155
  • 6.2.12. Estimation of molecular weight distribution155
  • 6.2.13. Determination of DPPH radical-scavenging activity155
  • 6.2.14. Determination of the reducing power155
  • 6.2.15. Sensory evaluation155
  • 6.2.16. Statistical analysis155-156
  • 6.3. Results and discussions156-167
  • 6.3.1. Change in p H156
  • 6.3.2. Change of chlorogenic acid156
  • 6.3.3. Change in MW distribution of MRPs156-157
  • 6.3.4. Changes in colour characteristics of MRPs157-158
  • 6.3.5. Change in amino acid content158-159
  • 6.3.6. Sensory evaluation159-161
  • 6.3.7. Comparison of Volatile compounds of MRPs161-164
  • 6.3.8. Comparison of antioxidant activity164-167
  • 6.4. Conclusion167-168
  • 6.5. References168-174
  • Chapter 7. Contribution of Crosslinking Products to the Flavour Enhancer Processing: The New Concept of Maillard Peptide in Sensory Characteristics of Maillard Reaction Systems174-193
  • 7.1. Introduction174-175
  • 7.2. Materials and Methods175-178
  • 7.2.1. Plant material175
  • 7.2.2. Chemicals175-176
  • 7.2.3. Preparation of Maillard reaction products176
  • 7.2.4. Gel Permeation Chromatography (GPC)176
  • 7.2.5. Hydrolysis of PXC and P-PXC176
  • 7.2.6. Total and free amino acid determination176
  • 7.2.7. Estimation of molecular weight distribution176-177
  • 7.2.8. MALDI-TOF/TOF mass spectrometry177
  • 7.2.9. Comparative taste of MRPs from different peptide177
  • 7.2.10. Comparative Taste Profile Analysis177
  • 7.2.11. Statistical analysis177-178
  • 7.3. Results and discussions178-190
  • 7.3.1. Comparison of MWD of MRPs from different peptides178
  • 7.3.2. Comparison of amino acid content of MRPs from different peptides178-179
  • 7.3.3. Taste characteristics of MRPs from different peptides179-180
  • 7.3.4. Change in MWD and amino acid composition of PXC, P-PXC and their hydrolysates180-182
  • 7.3.5. Comparative sensory characteristics of PXC, P-PXC and their hydrolysates182-183
  • 7.3.6. Compounds identification on MALDI-TOF/TOF spectrometer183-190
  • 7.4. Conclusion190
  • 7.5. References190-193
  • Chapter 8. Antioxidant and Antibacterial Activity of Sunflower Maillard Reaction Productsand Their Application on Stabilization of Fish and Olive Oil Nanoemulsions193-214
  • 8.1. Introduction193-194
  • 8.2. Materials and Methods194-198
  • 8.2.1. Plant material194
  • 8.2.2. Chemicals194-195
  • 8.2.3. Preparation of sunflower protein isolate and hydrolysates195
  • 8.2.4. Preparation of Maillard reaction products195
  • 8.2.5. Preparation of Nanoemulsion195-196
  • 8.2.6. Evaluation of antioxidant activity of MRPs196
  • 8.2.7. Antibacterial activity of sunflower Maillard reaction196-197
  • 8.2.8. Storage stability of fish and olive oil nanoemulsions197
  • 8.2.9. Determination of oil oxidation stability197-198
  • 8.2.10. Nanoemulsion characterisation198
  • 8.2.11. Statistical analysis198
  • 8.3. Results and discussions198-209
  • 8.3.1. Evaluation of sunflower peptides and its MRPs antioxidant activity198-200
  • 8.3.2. Evaluation of antimicrobial activity of sunflower peptides and its MRPs200-203
  • 8.3.3. Characterization of fish and olive oil O/W nanoemulsion203-206
  • 8.3.4. Effect of PXC antioxidants on oxidative stability of fish and olive oil based nanoemulsions206-209
  • 8.4. Conclusion209
  • 8.5. References209-214
  • General Conclusions214-216
  • Key Innovations216-217
  • Recommendations217-218
  • List of Publications218-219
  • Acknowledgement219-220
  • Appendices220
,

本文編號(hào):594297

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/594297.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶ee08b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com