溶液法制備的Cu 2 MSnS 4 (M=Zn,Gd)和Cu 2 SnS 3 薄膜及其太陽電池研究
發(fā)布時(shí)間:2021-08-21 21:55
通過太陽電池將太陽光轉(zhuǎn)換成電能是利用可持續(xù)能源的重要方式。為獲得低成本,穩(wěn)定和高效的太陽電池,人們迫切需要可溶液法加工制備的無機(jī)半導(dǎo)體薄膜材料。由于具有地球含量豐富的元素、高環(huán)境穩(wěn)定性、適合的帶隙(Eg)和高吸收系數(shù)(α),多元銅基硫?qū)倩顲u2MSnS4(M=Zn,Cd)(CMTS)和Cu2SnS3(CTS)等是很有希望的太陽電池的光吸收材料。本論文旨在發(fā)展原位溶液加工法來在透明導(dǎo)電襯基表面制備CMTS和CTS薄膜,并研究其太陽電池的光伏性能。本論文的主要研究工作和結(jié)論如下:1)發(fā)展了一種重復(fù)旋涂和退火(RSCA)的溶液加工法,在ITO襯基表面原位生長Cu2ZnSnS4(CZTS)納米顆粒致密薄膜;該方法的特點(diǎn)在于退火溫度低(300℃)、退火時(shí)間短(5 min)及分子型前驅(qū)液穩(wěn)定。所制備的CZTS薄膜的帶隙為Eg=1.48 eV,光吸收系數(shù)為α>104cm-1。以CZTS薄膜為空穴傳輸材料(HTM),制備了結(jié)構(gòu)為ITO/CZTS/MAPbI3/PCBM/BCP/Ag的反向平板異質(zhì)結(jié)鈣鈦礦太陽電池。發(fā)現(xiàn)鈣鈦礦太陽電池的性能顯著地依賴于CZTS薄膜厚度,且厚度小于100nm的CZT...
【文章來源】:中國科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁數(shù)】:132 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
ABSTRACT
Chapter 1 Introduction
1.1 Overview
1.1.1 Solar radiations
1.1.2 Working principle of a solar cell
1.1.3 Current-voltage (J-V) characteristics of a solar cell
1.2 Thin film solar cells
1.2.1 Perovskite solar cells
1.2.1.1 Material properties
1.2.1.2 Solution-based preparation methods of perovskite
1.2.1.3 Device structure of perovskite solar cells
1.2.1.4 HTMs in perovskite solar cells
1.2.1.5 CZTS HTM for MAPbI_3 based perovskite solar cells
1.2.2 Cu_2MSnS_4(M=Zn, Cd)and Cu_2SnS_3solar cells
1.2.2.1 Cu_2ZnSnS_4thin film solar cells
1.2.2.1.1 Cu_2MSnS_4 (M=Zn, Cd) properties
1.2.2.1.2 Phase characterizations in Cu_2MSnS_4 (M=Zn, Cd)
1.2.2.1.3 Cu_2ZnSnS_4 solution-based preparation
1.2.2.1.4 Cu_2ZnSnS_4 solar cells
1.2.2.2 Cu_2SnS_3thin film solar cells
1.2.2.2.1 Basic properties
1.2.2.2.2 Material preparation
1.2.2.2.3 Cu_2SnS_3 solar cells
1.2.2.3 Cu_2CdSnS_4thin film solar cells
1.2.2.3.1 Cu_2CdSnS_4 solution-based preparation and solar cells
1.3 Research motivations
1.3.1 Cu_2ZnSnS_4 nanoparticle film for HTM in perovskite solar cells
1.3.2 Cu_2SnS_3 nanoparticle films for solar cells
1.3.3 Cu_2CdSnS_4 bulk thin film for solar cells
1.3.4 Cu_2ZnSnS_4 bulk thin film for solar cells
Chapter 2 Solution-processed Cu_2ZnSnS_4 Nanoparticle Film as EfficientHole-transporting Material for Stable Perovskite Solar Cells
2.1 Introduction
2.2 Experimental section
2.2.1 Chemicals and materials
2.2.2 CZTS film materials preparation
2.2.3 Solar cell fabrication
2.2.4 Characterizations
2.3 Results and discussion
2.3.1 CZTS film preparations and characterizations
2.3.2 CZTS/MAPbl_3 film characterizations
2.3.3 Solar cells
2.3.3.1 CZTS/MAPbl_3 based solar cells
2.3.3.2 PEDOT: PSS/MAPbl_3based solar cells
2.3.3.3 CZTS/CdS solar cells
2.4 Conclusion
Chapter 3 Solution-processed Extremely Thin Films of Cu_2SnS_3 Nanoparticles forPlanar Heterojunction Solar Cells
3.1 Introduction
3.2 Experimental section
3.2.1 Chemicals
3.2.2 CTS film preparation
3.2.3 Characterizations and Instruments
3.3 Results and discussion
3.3.1 CTS film characterization
3.3.2 Solar cells
3.3.2.1 Optimization of solar cell structure
3.3.2.2 T_a-dependence of device performance
3.4 Conclusion
Chapter 4 A Solid-state Cd-diffusion Strategy to Prepare Bulk Cu_2CdSnS_4 Films forSolar Cells
4.1 Introduction
4.2 Experimental section
4.2.1 Chemicals
4.2.2 Film preparation
4.2.3 Solar cell preparation
4.2.4 Characterizations and Instruments
4.3 Results and discussion
4.3.1 CCTS film formation
4.3.1.1 Effects of CTS film thickness
4.3.1.2 Effects of sulfurization temperature
4.3.1.3 Chemical state and optical property of bulk CCTS film
4.3.2 Solar cells
4.4 Conclusion
Chapter 5 Preliminary Study of Solution-processed Bulk Cu_2ZnSnS_4 Films forSolar Cells
5.1. Introduction
5.2 Experimental section
5.2.1 Chemicals and materials
5.2.2 Bulk CZTS film preparation
5.2.3 Solar cell preparation
5.2.4 Characterizations
5.3 Results and discussion
5.3.1 FTO/CZTS film characterization
5.3.2 FTO/TiO_2/CZTS film characterization
5.3.3 Solar cells
5.4 Conclusion
Chapter 6 Main conclusions and outlook
References
Acknowledgements
Publications
本文編號:3356401
【文章來源】:中國科學(xué)技術(shù)大學(xué)安徽省 211工程院校 985工程院校
【文章頁數(shù)】:132 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
ABSTRACT
Chapter 1 Introduction
1.1 Overview
1.1.1 Solar radiations
1.1.2 Working principle of a solar cell
1.1.3 Current-voltage (J-V) characteristics of a solar cell
1.2 Thin film solar cells
1.2.1 Perovskite solar cells
1.2.1.1 Material properties
1.2.1.2 Solution-based preparation methods of perovskite
1.2.1.3 Device structure of perovskite solar cells
1.2.1.4 HTMs in perovskite solar cells
1.2.1.5 CZTS HTM for MAPbI_3 based perovskite solar cells
1.2.2 Cu_2MSnS_4(M=Zn, Cd)and Cu_2SnS_3solar cells
1.2.2.1 Cu_2ZnSnS_4thin film solar cells
1.2.2.1.1 Cu_2MSnS_4 (M=Zn, Cd) properties
1.2.2.1.2 Phase characterizations in Cu_2MSnS_4 (M=Zn, Cd)
1.2.2.1.3 Cu_2ZnSnS_4 solution-based preparation
1.2.2.1.4 Cu_2ZnSnS_4 solar cells
1.2.2.2 Cu_2SnS_3thin film solar cells
1.2.2.2.1 Basic properties
1.2.2.2.2 Material preparation
1.2.2.2.3 Cu_2SnS_3 solar cells
1.2.2.3 Cu_2CdSnS_4thin film solar cells
1.2.2.3.1 Cu_2CdSnS_4 solution-based preparation and solar cells
1.3 Research motivations
1.3.1 Cu_2ZnSnS_4 nanoparticle film for HTM in perovskite solar cells
1.3.2 Cu_2SnS_3 nanoparticle films for solar cells
1.3.3 Cu_2CdSnS_4 bulk thin film for solar cells
1.3.4 Cu_2ZnSnS_4 bulk thin film for solar cells
Chapter 2 Solution-processed Cu_2ZnSnS_4 Nanoparticle Film as EfficientHole-transporting Material for Stable Perovskite Solar Cells
2.1 Introduction
2.2 Experimental section
2.2.1 Chemicals and materials
2.2.2 CZTS film materials preparation
2.2.3 Solar cell fabrication
2.2.4 Characterizations
2.3 Results and discussion
2.3.1 CZTS film preparations and characterizations
2.3.2 CZTS/MAPbl_3 film characterizations
2.3.3 Solar cells
2.3.3.1 CZTS/MAPbl_3 based solar cells
2.3.3.2 PEDOT: PSS/MAPbl_3based solar cells
2.3.3.3 CZTS/CdS solar cells
2.4 Conclusion
Chapter 3 Solution-processed Extremely Thin Films of Cu_2SnS_3 Nanoparticles forPlanar Heterojunction Solar Cells
3.1 Introduction
3.2 Experimental section
3.2.1 Chemicals
3.2.2 CTS film preparation
3.2.3 Characterizations and Instruments
3.3 Results and discussion
3.3.1 CTS film characterization
3.3.2 Solar cells
3.3.2.1 Optimization of solar cell structure
3.3.2.2 T_a-dependence of device performance
3.4 Conclusion
Chapter 4 A Solid-state Cd-diffusion Strategy to Prepare Bulk Cu_2CdSnS_4 Films forSolar Cells
4.1 Introduction
4.2 Experimental section
4.2.1 Chemicals
4.2.2 Film preparation
4.2.3 Solar cell preparation
4.2.4 Characterizations and Instruments
4.3 Results and discussion
4.3.1 CCTS film formation
4.3.1.1 Effects of CTS film thickness
4.3.1.2 Effects of sulfurization temperature
4.3.1.3 Chemical state and optical property of bulk CCTS film
4.3.2 Solar cells
4.4 Conclusion
Chapter 5 Preliminary Study of Solution-processed Bulk Cu_2ZnSnS_4 Films forSolar Cells
5.1. Introduction
5.2 Experimental section
5.2.1 Chemicals and materials
5.2.2 Bulk CZTS film preparation
5.2.3 Solar cell preparation
5.2.4 Characterizations
5.3 Results and discussion
5.3.1 FTO/CZTS film characterization
5.3.2 FTO/TiO_2/CZTS film characterization
5.3.3 Solar cells
5.4 Conclusion
Chapter 6 Main conclusions and outlook
References
Acknowledgements
Publications
本文編號:3356401
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/3356401.html
最近更新
教材專著