天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

聚醚類二氧化碳增稠劑材料的設(shè)計、合成與性能研究

發(fā)布時間:2019-06-19 08:34
【摘要】:提高石油采收率是增強我國資源保障能力、提高我國能源安全水平、更好地滿足社會經(jīng)濟發(fā)展需要的迫切要求。經(jīng)過多年的發(fā)展,CO_2驅(qū)油已經(jīng)成為最具潛力的三次采油技術(shù)之一。但是在CO_2驅(qū)油過程中,由于CO_2流體粘度太低導(dǎo)致CO_2傾向于向采油井發(fā)生“指進”而沒有更多的接觸油藏中的原油導(dǎo)致波及效率不高,限制了CO_2的驅(qū)替效率。增加CO_2流體粘度可以降低CO_2-原油流度比,削弱甚至消除粘性指進現(xiàn)象,進而改善CO_2驅(qū)替效率。因此研究出一種能夠增加CO_2粘度提高采收率的增稠劑材料對石油開采具有深遠的影響。含氟聚合物以及在大量助溶劑條件下的聚硅氧烷是最有效的、能夠顯著增稠CO_2的兩類CO_2增稠劑,遺憾的是這兩類聚合物因環(huán)境和成本問題限制了其實際應(yīng)用,其他聚合物因在CO_2中溶解度低而不能有效增稠CO_2。本論文旨在設(shè)計并合成低成本、環(huán)境友好的可溶于CO_2并能夠有效增稠CO_2的非氟聚合物,為CO_2增稠劑材料的實際應(yīng)用提供理論和技術(shù)支持。本論文首先以聚醚中CO_2溶解性最好的聚環(huán)氧丙烷(PPO)為親CO_2基礎(chǔ)聚合物,通過共聚向PPO中引入增稠基團并研究其增稠CO_2的性能;在實現(xiàn)增稠CO_2后,從熱力學(xué)出發(fā)分析并研究了聚醚的改性方法,將硅結(jié)構(gòu)單元引入到聚醚主鏈結(jié)構(gòu)中提高了材料在CO_2中溶解性;最后對提高了CO_2親和性的改性聚醚進行進一步的增稠改性,從而達到更好的CO_2增稠效果。首次以親CO_2的環(huán)氧丙烷齊聚物(PPO)為基礎(chǔ)聚合物,以苯基為增稠基團,設(shè)計并合成了環(huán)氧丙烷-苯基縮水甘油醚共聚物和環(huán)氧丙烷-氧化苯乙烯共聚物作為CO_2增稠劑。為了促進聚合物溶解于CO_2,我們用親CO_2的乙酸酯基取代了厭CO_2的羥基。通過濁點壓力測試系統(tǒng)研究了聚醚增稠劑在CO_2中的相行為,為了鍵聯(lián)結(jié)構(gòu)與溶解性關(guān)系,我們研究了苯基對聚合物物化性質(zhì)的影響。在實現(xiàn)溶解的基礎(chǔ)上,研究了增稠基團含量、spacer、聚合物分子量對增稠劑增稠CO_2效果的影響。實驗表明我們設(shè)計的兩種聚醚共聚物對CO_2都有一定的增稠效果。CO_2增稠劑研制的難點在于CO_2是一種弱溶劑,通常高分子量材料在CO_2中溶解度低,限制了CO_2增稠劑的發(fā)展。在確定了聚醚共聚物能夠增稠CO_2之后,為了改善聚醚在CO_2中的溶解性進而為增稠改性提供更好的溶解基礎(chǔ),我們從熱力學(xué)出發(fā)分析并討論了聚醚的改性方法。限制聚醚在CO_2中溶解性的主要因素在于不利的混合焓,預(yù)期降低聚醚分子間作用力能夠提高聚醚的溶解性;我們將硅結(jié)構(gòu)單元引入聚醚分子結(jié)構(gòu)中,設(shè)計并合成了硅改性聚醚;表面張力和玻璃化轉(zhuǎn)變溫度測試表明硅結(jié)構(gòu)單元能夠顯著降低聚醚分子間相互作用并提高聚醚鏈柔性,有利于改善混合焓和混合熵;硅改性聚醚在CO_2中的相行為測試表明硅結(jié)構(gòu)單元能夠顯著提高聚合物在CO_2中的溶解性。綜合分析之后我們認為硅改性聚醚在CO_2中具有較高的溶解性主要歸因于硅結(jié)構(gòu)單元降低了聚合物分子間作用力;谏鲜鲇懻摰木勖迅男苑椒ㄎ覀冞M一步設(shè)計合成了硅改性的聚醚增稠劑以期望獲得更好的增稠效果。我們用大體積七甲基三硅氧烷作為側(cè)基改性聚醚,預(yù)期能夠在降低聚醚分子間作用力的同時增大聚合物的自由基體,提高鏈柔性,增加聚醚在CO_2中的溶解。由于環(huán)氧丙烷-苯基縮水甘油醚共聚物和環(huán)氧丙烷-氧化苯乙烯共聚物都能夠有效增稠CO_2,我們繼續(xù)選擇苯基作為增稠基團引入到親CO_2的硅改性聚醚中。首先設(shè)計并合成了七甲基三硅氧烷改性聚醚增稠劑;其次研究了七甲基三硅氧烷對增稠劑分子間作用力和鏈柔性的影響;然后研究了硅改性聚醚增稠劑在CO_2中相行為;最后研究了硅改性聚醚對CO_2的增稠效果。粘度測試表明硅改性聚醚增稠劑能夠更大程度的增稠CO_2。
[Abstract]:The improvement of oil recovery rate is an urgent need to enhance our country's resource security, improve our energy security and meet the needs of social and economic development. After many years of development, CO _ 2 oil displacement has become one of the most promising three-time oil recovery technology. However, in the process of CO _ 2 oil displacement, since the viscosity of CO _ 2 fluid is too low, CO _ 2 tends to generate "finger-in" to the production well, and no more of the crude oil in the contact reservoir results in a high impact efficiency, and the displacement efficiency of the CO _ 2 is limited. The increase of CO _ 2 fluid viscosity can decrease the ratio of CO _ 2 to crude oil, weaken or even eliminate the viscous fingering phenomenon, and improve the efficiency of CO _ 2 displacement. Therefore, a kind of thickening agent material which can increase the CO _ 2 viscosity and improve the recovery ratio has a far-reaching influence on the oil exploitation. the fluorine-containing polymer and the polysiloxane under the condition of a large amount of co-solvent are the most effective and can obviously thicken the two types of CO _ 2 thickening agents of the CO _ 2, and unfortunately, the two types of polymers limit the practical application of the two types of CO _ 2 thickeners due to environmental and cost problems, Other polymers are not effective in thickening CO _ 2 due to the low solubility in CO _ 2. The purpose of this paper is to design and synthesize a low-cost, environment-friendly non-fluorine polymer which is soluble in CO _ 2 and can effectively thicken the CO _ 2, and provides theoretical and technical support for the practical application of the CO _ 2 thickener material. Polypropylene oxide (PPO) with the best solubility of CO _ 2 in the polyether is firstly used as the base polymer of the pro-CO _ 2, the thickening group is introduced into the PPO by the copolymerization, and the performance of the thickening CO _ 2 is studied; after the thickening of the CO _ 2, the modification method of the polyether is analyzed and studied from the thermodynamics, The introduction of the silicon structural unit into the polyether main chain structure improves the solubility of the material in the CO _ 2; and finally, the modified polyether with the improved CO _ 2 affinity is further thickened and modified so as to achieve better CO _ 2 thickening effect. The propylene oxide-phenyl glycidyl ether copolymer and the propylene oxide-oxide-styrene copolymer were designed and synthesized by using the propylene oxide oligomer (PPO) of the pro-CO _ 2 as the base polymer for the first time, and the propylene oxide-phenyl glycidyl ether copolymer and the propylene oxide-oxidized styrene copolymer were designed and synthesized as the CO _ 2 thickening agent. In order to promote the dissolution of the polymer in CO _ 2, we replace the hydroxyl of the anaerobic CO _ 2 with the acetate group of the pro-CO2. The phase behavior of polyether thickener in CO _ 2 was studied by cloud point pressure test system, and the effect of phenyl on the physical and chemical properties of polymer was studied in order to bond the structure and solubility. The effect of thickening group content, spacer and polymer molecular weight on the thickening of CO _ 2 was studied on the basis of the dissolution. The results show that the two kinds of polyether copolymers have a certain thickening effect on CO _ 2. The difficulty in the development of CO _ 2 thickener is that CO _ 2 is a weak solvent, the solubility of high molecular weight materials in CO _ 2 is low, and the development of CO _ 2 thickener is limited. In order to improve the solubility of the polyether in the CO _ 2 and to provide a better dissolution basis for thickening modification after the determination of the ability of the polyether copolymer to thicken the CO _ 2, the modification method of the polyether is analyzed and discussed from the thermodynamics. The main factors that limit the solubility of polyether in CO _ 2 are the unfavorable mixing ratio, which is expected to lower the solubility of polyether, and we introduce the silicon structural unit into the molecular structure of the polyether, and design and synthesize the silicon modified polyether. The results of surface tension and glass transition temperature show that the silicon structural unit can significantly reduce the interaction between the polyether molecules and increase the flexibility of the polyether chain, which is beneficial to the improvement of the mixing and mixing entropy; The phase behavior of the silicon modified polyether in CO _ 2 shows that the silicon structural unit can significantly improve the solubility of the polymer in the CO _ 2. After the comprehensive analysis, we think that the high solubility of the silicon modified polyether in the CO _ 2 is mainly attributed to the reduction of the intermolecular force between the polymer molecules. Based on the above-discussed polyether modification method, we further developed a silicon-modified polyether thickener to achieve a better thickening effect. We use the large volume of heptamethyl trisiloxane as the side group modified polyether, and it is expected that the free base of the polymer can be increased while the action force between the polyether molecules is reduced, the flexibility of the chain is improved, and the dissolution of the polyether in the CO _ 2 is increased. Since the propylene oxide-phenyl glycidyl ether copolymer and the propylene oxide-oxide-styrene copolymer are capable of effectively thickening the CO _ 2, we continue to select the phenyl group as the thickening group to be introduced into the silicon-modified polyether of the pro-CO2. Seven-methyl trisiloxane modified polyether thickeners were first designed and synthesized; secondly, the effect of the heptamethyltrisiloxane on the intermolecular force and the chain flexibility of the thickener was studied, and then the phase behavior of the silicon modified polyether thickener in the CO _ 2 was studied. The effect of silicon modified polyether on the thickening of CO _ 2 was studied. The viscosity tests show that the silicon modified polyether thickener can thicken the CO _ 2 to a greater extent.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TE39

【相似文獻】

相關(guān)期刊論文 前10條

1 潘闖;增稠劑在飲品的作用[J];食品與藥品;2005年02期

2 章民交;印花增稠劑的進展[J];上海紡織科技;1982年08期

3 雅亮;;二氧化硅增稠劑[J];精細與專用化學(xué)品;1985年21期

4 張文光;;陰離子增稠劑[J];國外紡織技術(shù)(化纖、染整、環(huán)境保護分冊);1986年06期

5 唐沛秋;;乳液增稠劑[J];江蘇化工;1986年03期

6 ;經(jīng)濟無害的增稠劑[J];上海化工;1988年05期

7 于清章;;如何選擇增稠劑與消泡劑[J];化學(xué)建材;1990年05期

8 王勤;無機增稠劑的制備及其應(yīng)用[J];日用化學(xué)工業(yè);1991年04期

9 黃紹和;;新型復(fù)合增稠劑[J];化學(xué)建材;1991年04期

10 何明溪;非火油增稠劑的合成與應(yīng)用試驗[J];山東輕工業(yè)學(xué)院學(xué)報(自然科學(xué)版);1994年03期

相關(guān)會議論文 前6條

1 馬德華;辛寅昌;;一種新型的水溶性聚合物可應(yīng)用于壓裂液增稠劑[A];油氣藏改造壓裂酸化技術(shù)研討會會刊[C];2014年

2 胡群巧;袁金亮;傅向東;;環(huán)保型印花增稠劑DM-ZC2的開發(fā)與應(yīng)用[A];第四屆中國(廣東)紡織助劑行業(yè)年會論文集[C];2012年

3 馬鋒玲;劉艷霞;鄭銀林;王少江;;增稠劑和減水劑對PVA-ECC性能的影響[A];特種混凝土與瀝青混凝土新技術(shù)及工程應(yīng)用[C];2012年

4 葉蕾;;鈣強化豆奶穩(wěn)定性研究[A];2009年中國水產(chǎn)學(xué)會學(xué)術(shù)年會論文摘要集[C];2009年

5 倪成濤;張悅;周明;陶忠華;于廣慧;;活性染料印花增稠劑FS-165的制備與應(yīng)用[A];“佶龍杯”第六屆全國紡織印花學(xué)術(shù)研討會論文集[C];2013年

6 張曦晨;劉金剛;;延展黏度對涂布過程的影響及主要測量方法[A];中國造紙學(xué)會第十五屆學(xué)術(shù)年會論文集[C];2012年

相關(guān)重要報紙文章 前8條

1 河南南陽理工學(xué)院生化工程系 侯振建;增稠劑也有保健功能[N];中國食品報;2010年

2 上海師范大學(xué)食品添加劑和配料研究所 胡國華;勿讓張悟本的增稠劑謬論蔓延消費者當(dāng)正確理解增稠劑[N];中國食品報;2010年

3 林宣益;水性涂料用助劑發(fā)展概況[N];中國化工報;2005年

4 記者 徐海波;武漢:不少豆?jié){店在豆?jié){中添加“豆?jié){精”[N];新華每日電訊;2011年

5 王新梅 王菁文;簡析醬類食品中增稠劑的應(yīng)用[N];中國食品質(zhì)量報;2004年

6 彭家澤;增稠劑在醬類食品中的應(yīng)用[N];中國食品質(zhì)量報;2003年

7 記者 陸慕寒;瑞士開發(fā)環(huán)保印花涂料[N];中國紡織報;2005年

8 中國農(nóng)業(yè)大學(xué)食品學(xué)院 范志紅;多喝甜飲料 痛風(fēng)危險高[N];衛(wèi)生與生活;2010年

相關(guān)博士學(xué)位論文 前3條

1 張永飛;聚醚類二氧化碳增稠劑材料的設(shè)計、合成與性能研究[D];吉林大學(xué);2017年

2 彭軍;新型聚氨酯締合增稠劑的制備與流變學(xué)行為[D];華南理工大學(xué);2014年

3 李青;基于混合多糖增稠劑的天然纖維織物活性干法轉(zhuǎn)移印花[D];蘇州大學(xué);2014年

相關(guān)碩士學(xué)位論文 前10條

1 樊國強;新型耐高溫固井增稠劑的研制[D];天津大學(xué);2014年

2 馬乃宇;星形聚氨酯締合型增稠劑[D];安徽大學(xué);2016年

3 王峰;不同疏水尾鏈聚氨酯締合增稠劑的制備與性能[D];華南理工大學(xué);2016年

4 黃洲;二氧化碳增稠劑的制備及其壓裂性能評價[D];西南石油大學(xué);2017年

5 張海玲;耐鹽增稠劑的合成與性能表征[D];蘇州大學(xué);2012年

6 張玉芳;耐電解質(zhì)增稠劑的合成與性能[D];蘇州大學(xué);2014年

7 婁光偉;聚醚型聚氨酯增稠劑的合成與性能研究[D];蘭州大學(xué);2006年

8 王興鵬;聚丙烯酸系增稠劑的合成及在紡織中的應(yīng)用[D];遼寧大學(xué);2011年

9 王光良;耐電解質(zhì)增稠劑的合成與測試[D];青島大學(xué);2008年

10 王晨;憎水改性丙烯酸系增稠劑的制備和表征[D];濟南大學(xué);2010年

,

本文編號:2502220

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2502220.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶55fd0***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
午夜小视频成人免费看| 国产一区在线免费国产一区| 免费一级欧美大片免费看| 日本在线 一区 二区| 日韩一级免费中文字幕视频| 欧美人妻盗摄日韩偷拍| 99热在线精品视频观看| 亚洲一区二区精品免费视频| 亚洲精品蜜桃在线观看| 日韩精品一区二区不卡| 欧美大胆女人的大胆人体| 欧美成人黄色一区二区三区| 91午夜少妇极品福利| 日韩欧美三级视频在线| 欧美一本在线免费观看| 亚洲熟女熟妇乱色一区| 亚洲精品国男人在线视频| 久热99中文字幕视频在线| 91在线播放在线播放观看| 国产精品久久精品国产| 91亚洲国产—区=区a| 精品人妻一区二区三区在线看| 亚洲国产精品国自产拍社区| 国产综合一区二区三区av| 欧美大胆美女a级视频| 免费在线成人激情视频| 日本淫片一区二区三区| 精品老司机视频在线观看| 日韩人妻有码一区二区| 久久久免费精品人妻一区二区三区| 国产日韩综合一区在线观看| 日本高清不卡一二三区| 国产精品激情在线观看| 久久精品国产99精品亚洲| 老熟妇乱视频一区二区| 人妻乱近亲奸中文字幕| 亚洲欧美精品伊人久久| 国产又色又粗又黄又爽| 欧美整片精品日韩综合| 中文字幕一二区在线观看| 亚洲精品中文字幕欧美|