聚醚類二氧化碳增稠劑材料的設(shè)計、合成與性能研究
[Abstract]:The improvement of oil recovery rate is an urgent need to enhance our country's resource security, improve our energy security and meet the needs of social and economic development. After many years of development, CO _ 2 oil displacement has become one of the most promising three-time oil recovery technology. However, in the process of CO _ 2 oil displacement, since the viscosity of CO _ 2 fluid is too low, CO _ 2 tends to generate "finger-in" to the production well, and no more of the crude oil in the contact reservoir results in a high impact efficiency, and the displacement efficiency of the CO _ 2 is limited. The increase of CO _ 2 fluid viscosity can decrease the ratio of CO _ 2 to crude oil, weaken or even eliminate the viscous fingering phenomenon, and improve the efficiency of CO _ 2 displacement. Therefore, a kind of thickening agent material which can increase the CO _ 2 viscosity and improve the recovery ratio has a far-reaching influence on the oil exploitation. the fluorine-containing polymer and the polysiloxane under the condition of a large amount of co-solvent are the most effective and can obviously thicken the two types of CO _ 2 thickening agents of the CO _ 2, and unfortunately, the two types of polymers limit the practical application of the two types of CO _ 2 thickeners due to environmental and cost problems, Other polymers are not effective in thickening CO _ 2 due to the low solubility in CO _ 2. The purpose of this paper is to design and synthesize a low-cost, environment-friendly non-fluorine polymer which is soluble in CO _ 2 and can effectively thicken the CO _ 2, and provides theoretical and technical support for the practical application of the CO _ 2 thickener material. Polypropylene oxide (PPO) with the best solubility of CO _ 2 in the polyether is firstly used as the base polymer of the pro-CO _ 2, the thickening group is introduced into the PPO by the copolymerization, and the performance of the thickening CO _ 2 is studied; after the thickening of the CO _ 2, the modification method of the polyether is analyzed and studied from the thermodynamics, The introduction of the silicon structural unit into the polyether main chain structure improves the solubility of the material in the CO _ 2; and finally, the modified polyether with the improved CO _ 2 affinity is further thickened and modified so as to achieve better CO _ 2 thickening effect. The propylene oxide-phenyl glycidyl ether copolymer and the propylene oxide-oxide-styrene copolymer were designed and synthesized by using the propylene oxide oligomer (PPO) of the pro-CO _ 2 as the base polymer for the first time, and the propylene oxide-phenyl glycidyl ether copolymer and the propylene oxide-oxidized styrene copolymer were designed and synthesized as the CO _ 2 thickening agent. In order to promote the dissolution of the polymer in CO _ 2, we replace the hydroxyl of the anaerobic CO _ 2 with the acetate group of the pro-CO2. The phase behavior of polyether thickener in CO _ 2 was studied by cloud point pressure test system, and the effect of phenyl on the physical and chemical properties of polymer was studied in order to bond the structure and solubility. The effect of thickening group content, spacer and polymer molecular weight on the thickening of CO _ 2 was studied on the basis of the dissolution. The results show that the two kinds of polyether copolymers have a certain thickening effect on CO _ 2. The difficulty in the development of CO _ 2 thickener is that CO _ 2 is a weak solvent, the solubility of high molecular weight materials in CO _ 2 is low, and the development of CO _ 2 thickener is limited. In order to improve the solubility of the polyether in the CO _ 2 and to provide a better dissolution basis for thickening modification after the determination of the ability of the polyether copolymer to thicken the CO _ 2, the modification method of the polyether is analyzed and discussed from the thermodynamics. The main factors that limit the solubility of polyether in CO _ 2 are the unfavorable mixing ratio, which is expected to lower the solubility of polyether, and we introduce the silicon structural unit into the molecular structure of the polyether, and design and synthesize the silicon modified polyether. The results of surface tension and glass transition temperature show that the silicon structural unit can significantly reduce the interaction between the polyether molecules and increase the flexibility of the polyether chain, which is beneficial to the improvement of the mixing and mixing entropy; The phase behavior of the silicon modified polyether in CO _ 2 shows that the silicon structural unit can significantly improve the solubility of the polymer in the CO _ 2. After the comprehensive analysis, we think that the high solubility of the silicon modified polyether in the CO _ 2 is mainly attributed to the reduction of the intermolecular force between the polymer molecules. Based on the above-discussed polyether modification method, we further developed a silicon-modified polyether thickener to achieve a better thickening effect. We use the large volume of heptamethyl trisiloxane as the side group modified polyether, and it is expected that the free base of the polymer can be increased while the action force between the polyether molecules is reduced, the flexibility of the chain is improved, and the dissolution of the polyether in the CO _ 2 is increased. Since the propylene oxide-phenyl glycidyl ether copolymer and the propylene oxide-oxide-styrene copolymer are capable of effectively thickening the CO _ 2, we continue to select the phenyl group as the thickening group to be introduced into the silicon-modified polyether of the pro-CO2. Seven-methyl trisiloxane modified polyether thickeners were first designed and synthesized; secondly, the effect of the heptamethyltrisiloxane on the intermolecular force and the chain flexibility of the thickener was studied, and then the phase behavior of the silicon modified polyether thickener in the CO _ 2 was studied. The effect of silicon modified polyether on the thickening of CO _ 2 was studied. The viscosity tests show that the silicon modified polyether thickener can thicken the CO _ 2 to a greater extent.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TE39
【相似文獻】
相關(guān)期刊論文 前10條
1 潘闖;增稠劑在飲品的作用[J];食品與藥品;2005年02期
2 章民交;印花增稠劑的進展[J];上海紡織科技;1982年08期
3 雅亮;;二氧化硅增稠劑[J];精細與專用化學(xué)品;1985年21期
4 張文光;;陰離子增稠劑[J];國外紡織技術(shù)(化纖、染整、環(huán)境保護分冊);1986年06期
5 唐沛秋;;乳液增稠劑[J];江蘇化工;1986年03期
6 ;經(jīng)濟無害的增稠劑[J];上海化工;1988年05期
7 于清章;;如何選擇增稠劑與消泡劑[J];化學(xué)建材;1990年05期
8 王勤;無機增稠劑的制備及其應(yīng)用[J];日用化學(xué)工業(yè);1991年04期
9 黃紹和;;新型復(fù)合增稠劑[J];化學(xué)建材;1991年04期
10 何明溪;非火油增稠劑的合成與應(yīng)用試驗[J];山東輕工業(yè)學(xué)院學(xué)報(自然科學(xué)版);1994年03期
相關(guān)會議論文 前6條
1 馬德華;辛寅昌;;一種新型的水溶性聚合物可應(yīng)用于壓裂液增稠劑[A];油氣藏改造壓裂酸化技術(shù)研討會會刊[C];2014年
2 胡群巧;袁金亮;傅向東;;環(huán)保型印花增稠劑DM-ZC2的開發(fā)與應(yīng)用[A];第四屆中國(廣東)紡織助劑行業(yè)年會論文集[C];2012年
3 馬鋒玲;劉艷霞;鄭銀林;王少江;;增稠劑和減水劑對PVA-ECC性能的影響[A];特種混凝土與瀝青混凝土新技術(shù)及工程應(yīng)用[C];2012年
4 葉蕾;;鈣強化豆奶穩(wěn)定性研究[A];2009年中國水產(chǎn)學(xué)會學(xué)術(shù)年會論文摘要集[C];2009年
5 倪成濤;張悅;周明;陶忠華;于廣慧;;活性染料印花增稠劑FS-165的制備與應(yīng)用[A];“佶龍杯”第六屆全國紡織印花學(xué)術(shù)研討會論文集[C];2013年
6 張曦晨;劉金剛;;延展黏度對涂布過程的影響及主要測量方法[A];中國造紙學(xué)會第十五屆學(xué)術(shù)年會論文集[C];2012年
相關(guān)重要報紙文章 前8條
1 河南南陽理工學(xué)院生化工程系 侯振建;增稠劑也有保健功能[N];中國食品報;2010年
2 上海師范大學(xué)食品添加劑和配料研究所 胡國華;勿讓張悟本的增稠劑謬論蔓延消費者當(dāng)正確理解增稠劑[N];中國食品報;2010年
3 林宣益;水性涂料用助劑發(fā)展概況[N];中國化工報;2005年
4 記者 徐海波;武漢:不少豆?jié){店在豆?jié){中添加“豆?jié){精”[N];新華每日電訊;2011年
5 王新梅 王菁文;簡析醬類食品中增稠劑的應(yīng)用[N];中國食品質(zhì)量報;2004年
6 彭家澤;增稠劑在醬類食品中的應(yīng)用[N];中國食品質(zhì)量報;2003年
7 記者 陸慕寒;瑞士開發(fā)環(huán)保印花涂料[N];中國紡織報;2005年
8 中國農(nóng)業(yè)大學(xué)食品學(xué)院 范志紅;多喝甜飲料 痛風(fēng)危險高[N];衛(wèi)生與生活;2010年
相關(guān)博士學(xué)位論文 前3條
1 張永飛;聚醚類二氧化碳增稠劑材料的設(shè)計、合成與性能研究[D];吉林大學(xué);2017年
2 彭軍;新型聚氨酯締合增稠劑的制備與流變學(xué)行為[D];華南理工大學(xué);2014年
3 李青;基于混合多糖增稠劑的天然纖維織物活性干法轉(zhuǎn)移印花[D];蘇州大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 樊國強;新型耐高溫固井增稠劑的研制[D];天津大學(xué);2014年
2 馬乃宇;星形聚氨酯締合型增稠劑[D];安徽大學(xué);2016年
3 王峰;不同疏水尾鏈聚氨酯締合增稠劑的制備與性能[D];華南理工大學(xué);2016年
4 黃洲;二氧化碳增稠劑的制備及其壓裂性能評價[D];西南石油大學(xué);2017年
5 張海玲;耐鹽增稠劑的合成與性能表征[D];蘇州大學(xué);2012年
6 張玉芳;耐電解質(zhì)增稠劑的合成與性能[D];蘇州大學(xué);2014年
7 婁光偉;聚醚型聚氨酯增稠劑的合成與性能研究[D];蘭州大學(xué);2006年
8 王興鵬;聚丙烯酸系增稠劑的合成及在紡織中的應(yīng)用[D];遼寧大學(xué);2011年
9 王光良;耐電解質(zhì)增稠劑的合成與測試[D];青島大學(xué);2008年
10 王晨;憎水改性丙烯酸系增稠劑的制備和表征[D];濟南大學(xué);2010年
,本文編號:2502220
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2502220.html