列車軸承軌邊聲學(xué)診斷中故障聲譜識(shí)別的時(shí)變陣列分析技術(shù)研究
本文選題:故障診斷 + 軌邊聲學(xué); 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文
【摘要】:機(jī)械故障診斷技術(shù)的興起,給高速發(fā)展中的各新興制造業(yè)的安全保障提供了支持,減少和避免了重大事故的發(fā)生,表現(xiàn)出了巨大的經(jīng)濟(jì)和社會(huì)價(jià)值。高鐵作為我國(guó)新興裝備制造業(yè)的代名詞,其安全、舒適、高效一直受到國(guó)內(nèi)外的廣泛關(guān)注。因此,監(jiān)測(cè)和診斷列車運(yùn)行狀態(tài),預(yù)防列車事故的發(fā)生具有十分重大的意義。列車輪對(duì)軸承故障作為一種常見故障,與其相關(guān)的監(jiān)測(cè)與診斷研究一直為國(guó)內(nèi)外相關(guān)部門的熱點(diǎn)。其中,軌邊聲學(xué)診斷系統(tǒng)以非接觸式測(cè)量,可監(jiān)測(cè)早期故障的特點(diǎn)而廣受關(guān)注。然而,由于軌邊聲學(xué)診斷系統(tǒng)獲取信號(hào)的獨(dú)特方式,使其不可避免的存在一些測(cè)量問題。本文將以獲取軌邊聲學(xué)診斷系統(tǒng)中清晰可辨的故障聲譜為目標(biāo),以時(shí)變陣列分析為主要手段,針對(duì)系統(tǒng)測(cè)量所產(chǎn)生的聲譜微弱、聲譜畸變與聲譜混疊三個(gè)問題進(jìn)行探討和研究,以期獲取高速情況下可靠、準(zhǔn)確的列車軸承診斷結(jié)果。論文首先通過分析軌邊聲學(xué)診斷系統(tǒng)的幾何模型,公式化的揭示了該系統(tǒng)中聲譜微弱、畸變、混疊三個(gè)測(cè)量問題產(chǎn)生的原因。針對(duì)目前主要使用的列車軸承,建立了以軸承故障頻率為主要指標(biāo)的故障類型判別基礎(chǔ)。并以此分別設(shè)計(jì)了列車軸承靜態(tài)聲學(xué)獲取方案和麥克風(fēng)陣列的列車軸承動(dòng)態(tài)聲學(xué)獲取方案。通過對(duì)靜態(tài)和動(dòng)態(tài)實(shí)驗(yàn)信號(hào)的頻譜特征分析,驗(yàn)證了軌邊系統(tǒng)中畸變混疊問題的存在。針對(duì)單麥克風(fēng)分離矯正方法的局限性,以形態(tài)時(shí)頻濾波與時(shí)頻幅值匹配方法為例進(jìn)行了深層次的分析探討,指出了單麥克風(fēng)信號(hào)對(duì)空間聲源的欠定性描述是導(dǎo)致方法失效的本質(zhì)原因。其次,針對(duì)聲譜混疊問題,論文先后從遠(yuǎn)場(chǎng)條件下的陣列模型出發(fā),提出了一條基于麥克風(fēng)陣列的時(shí)變空域?yàn)V波重排的多源畸變混疊信號(hào)分離、矯正方案。該方法通過零角度空域?yàn)V波器獲取不同聲源的時(shí)間中心,并通過時(shí)變空域?yàn)V波重排最終實(shí)現(xiàn)不同畸變聲源的分離與矯正。由于時(shí)變空域?yàn)V波器的建立與信號(hào)能量幾乎無關(guān),因此該方法在微弱信號(hào)源分離與矯正方面相比于傳統(tǒng)單麥克風(fēng)方法具有明顯的優(yōu)勢(shì)。此外,實(shí)驗(yàn)表明所提方案對(duì)頻帶近似、時(shí)頻能量離散的多源信號(hào)分離表現(xiàn)也十分良好。隨后,針對(duì)聲譜畸變問題,論文又對(duì)基于陣列的聲譜畸變矯正方案進(jìn)行了進(jìn)一步的研究,并以單聲源為例提出了一種基于時(shí)變多信號(hào)分類和角插值重采樣的無參矯正方法。該方案通過時(shí)變多信號(hào)分類獲取聲源的實(shí)時(shí)位置,并通過聲源發(fā)射時(shí)間和接收時(shí)間的一一映射關(guān)系建立重采樣時(shí)間序列,實(shí)現(xiàn)對(duì)畸變信號(hào)的無參矯正。該方法相比于傳統(tǒng)方法具有無需先驗(yàn)知識(shí),計(jì)算量小,噪聲魯棒性強(qiáng),適用于變速聲源問題等諸多優(yōu)點(diǎn),在實(shí)際系統(tǒng)的應(yīng)用中具有較高的潛力。最后,針對(duì)聲譜特征微弱問題,論文以時(shí)變陣列分析思想為指導(dǎo),通過漢克矩陣構(gòu)建與陣列信號(hào)極其類似的偽陣列信號(hào),提出了一種基于時(shí)變奇異值分解的周期性暫態(tài)信號(hào)聲譜特征增強(qiáng)方法。重點(diǎn)研究了時(shí)變奇異值分解方法在處理周期暫態(tài)信號(hào)中所表現(xiàn)的基本性質(zhì),并以此及建立了一條基于時(shí)變奇異值分解的軸承故障頻譜特征增強(qiáng)與識(shí)別路線。研究表明,該路線不僅在各類噪聲,提高頻譜特征信噪比表現(xiàn)優(yōu)異,還在保留周期故障特征的諧波成分上具有較為顯著的優(yōu)勢(shì)。通過對(duì)列車軸承的故障聲學(xué)信號(hào)進(jìn)行分析,表明該方案在提升故障信號(hào)的聲譜特征方面作用明顯。全文以麥克風(fēng)陣列所采集的單、多聲源軌邊聲學(xué)軸承故障信號(hào)為處理對(duì)象,從軌邊聲學(xué)信號(hào)采集模型與軌邊信號(hào)的聲譜特征出發(fā),建立了一條完整的以時(shí)變陣列分析思路為主體的聲譜混疊分離、聲譜畸變矯正和聲譜特征增強(qiáng)的技術(shù)路線,為最終實(shí)現(xiàn)列車軸承軌邊聲學(xué)系統(tǒng)故障聲譜清晰識(shí)別提供了一定的研究基礎(chǔ)和解決思路。
[Abstract]:The rise of mechanical fault diagnosis technology has provided support to the safety guarantee of the emerging manufacturing industry in high speed development, reducing and avoiding the occurrence of major accidents, showing great economic and social value. As the pronoun of the new equipment manufacturing industry of our country, the high speed railway has been widely concerned at home and abroad. Therefore, it is of great significance to monitor and diagnose the running state of the train and prevent the occurrence of train accidents. The train wheelset bearing fault is a common fault, and its related monitoring and diagnosis research has always been a hot spot in the relevant departments at home and abroad. However, because of the unique way of obtaining signals from the acoustic diagnosis system on the rail side, it inevitably has some measurement problems. This paper aims at obtaining the clear and distinguishable sound spectrum in the track edge acoustic diagnosis system, with the time-varying array analysis as the main hand, and the sound spectrum produced by the system measurement is weak and sound. Three problems of spectral distortion and sound spectrum mixing are discussed and studied in order to obtain reliable and accurate diagnosis results of train bearing in high speed conditions. Firstly, the paper analyzes the geometric model of the track acoustic diagnosis system, and formulae the reasons for the weak, distortion and aliasing of three measurement problems in the system. In order to use the train bearing, a fault type criterion based on the bearing fault frequency is established, and the dynamic acoustic acquisition scheme of the static acoustics of the train bearing and the dynamic acoustic acquisition scheme of the train bearing of the microphone array are designed respectively. The analysis of the spectrum characteristics of the static and dynamic experimental signals is used to verify the track edge system. In view of the limitation of the single microphone separation and correction method, the deep analysis is carried out with the morphological time frequency filtering and the time frequency amplitude matching method. It is pointed out that the underqualitative description of the single microphone signal to the spatial sound source is the essential reason for the failure of the method. Secondly, the theory of the sound spectrum aliasing is discussed. In this paper, based on the array model under the far field condition, a multi source distorted aliasing signal separation and correction scheme based on the time-varying spatial domain filter rearrangement based on the microphone array is proposed. This method obtains the time center of different sound sources through the zero angle spatial domain filter, and finally realizes the different distortion sound sources through the time-varying spatial domain filter rearrangement. Separation and correction. Since the establishment of the time-varying space filter is almost independent of the signal energy, this method has obvious advantages compared with the traditional single microphone method in the separation and correction of weak signal source. In addition, the experiment shows that the proposed scheme is very good for the frequency band approximation and the time frequency energy discrete multisource signal separation. Then, in order to solve the problem of acoustic spectrum distortion, this paper further studies the array based correction scheme of acoustic spectrum distortion, and presents a non parametric correction method based on time-varying multi signal classification and angular interpolation resampling with single sound source as an example. The scheme obtains the real-time position of the sound source through the time-varying multi signal classification and sends through the sound source. The resampling time series is established by the one-to-one mapping relationship between the shooting time and the receiving time to realize the non parametric correction of the distorted signal. Compared with the traditional method, the method has many advantages, such as without prior knowledge, small calculation, strong noise robustness, suitable for the problem of variable speed sound source and so on, and has high potential in the application of the actual system. Finally, the needle Based on the time-varying array analysis idea, the paper constructs a pseudo array signal which is extremely similar to the array signal by the Hank matrix, and proposes a method for the characteristic enhancement of the periodic transient signal based on the time-varying singular value decomposition. The time variant singular value decomposition method is focused on the processing of the transient transient signal. Based on the basic properties of the signal, a frequency spectrum feature enhancement and recognition route based on time-varying singular value decomposition is established. The study shows that the route is not only excellent in all kinds of noise, but also in improving the spectrum characteristic signal to noise ratio. After analyzing the fault acoustic signal of the train bearing, it shows that the scheme plays an obvious role in improving the sound spectrum characteristics of the fault signal. The full text is based on the single, multi source track edge acoustic bearing fault signal collected by the microphone array, and sets out from the sound spectrum characteristics of the acoustic signal acquisition mode and the edge signal of the rail. The technical route of the sound spectrum aliasing separation, the correction of the sound spectrum distortion and the enhancement of the sound spectrum features by the time-varying array analysis idea provides a certain research basis and solution for the final realization of the clear recognition of the fault sonogram of the train bearing rail edge acoustic system.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:U279.323
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳金如;必須重視軸承的問題[J];印刷世界;2000年06期
2 安景灝;軸承的拆裝[J];機(jī)械工人.冷加工;2003年10期
3 ;全國(guó)軸承修舊利廢概況[J];軸承;1974年02期
4 ;1、3類軸承內(nèi)圈內(nèi)徑廢品的改制[J];軸承;1979年05期
5 ;軸承跑圈快速可靠的維修方法[J];工程機(jī)械與維修;2000年06期
6 乾正幸,郭正標(biāo);300系新干線電車用車軸軸承內(nèi)圈拔出方法的改善[J];國(guó)外鐵道車輛;2000年06期
7 ;2001年《軸承》年度索引[J];軸承;2001年12期
8 ;2002年《軸承》年度索引[J];軸承;2002年12期
9 張合軍,房宏政;軸承跑內(nèi)外圈的簡(jiǎn)易維修方法[J];礦山機(jī)械;2002年02期
10 ;2003年《軸承》年度索引[J];軸承;2003年12期
相關(guān)會(huì)議論文 前10條
1 張偉;;提高軸承可靠性,爭(zhēng)創(chuàng)精品軸承[A];2006年全國(guó)機(jī)械可靠性學(xué)術(shù)交流會(huì)論文集[C];2006年
2 浦紅;王德寶;王仲琨;;減速機(jī)軸承內(nèi)圈表面剝離原因分析[A];全國(guó)冶金物理測(cè)試信息網(wǎng)建網(wǎng)30周年學(xué)術(shù)論文集[C];2011年
3 宋子厚;;軸承電流的探討[A];2004年中國(guó)造紙學(xué)會(huì)新聞紙專業(yè)委員會(huì)學(xué)術(shù)年會(huì)論文及報(bào)告匯編[C];2004年
4 朱岱青;;水渣2#斗輪機(jī)的軸承檢修新工藝[A];上海物流工程學(xué)會(huì)2003’論文集[C];2003年
5 張寧;陳南;韓安;;軸承生產(chǎn)質(zhì)量控制用噪聲測(cè)量分析系統(tǒng)[A];第五屆中國(guó)CAE工程分析技術(shù)年會(huì)論文集[C];2009年
6 明陽;陳進(jìn);;基于循環(huán)維納濾波器和包絡(luò)譜的軸承微弱故障特征提取[A];第十二屆全國(guó)設(shè)備故障診斷學(xué)術(shù)會(huì)議論文集[C];2010年
7 楊錦斌;;量化軸承預(yù)緊,提升主軸品質(zhì)[A];2007年全國(guó)機(jī)電企業(yè)工藝年會(huì)《星火機(jī)床杯》工藝創(chuàng)新發(fā)展綠色制造節(jié)約型工藝有獎(jiǎng)?wù)魑目萍颊撐募痆C];2007年
8 達(dá)文弟;彭德軍;譚建宇;;關(guān)于拉矯輥及其減速機(jī)壽命的思考[A];2012年全國(guó)煉鋼—連鑄生產(chǎn)技術(shù)會(huì)論文集(下)[C];2012年
9 達(dá)文弟;彭德軍;譚建宇;;關(guān)于拉矯輥及其減速機(jī)壽命的思考[A];2012年河北省軋鋼技術(shù)暨學(xué)術(shù)年會(huì)論文集(下)[C];2012年
10 達(dá)文弟;彭德軍;譚建宇;;關(guān)于拉矯輥及其減速機(jī)壽命的思考[A];2012河北省煉鋼連鑄生產(chǎn)技術(shù)與學(xué)術(shù)交流會(huì)論文集[C];2012年
相關(guān)重要報(bào)紙文章 前9條
1 無錫宏大紡織機(jī)械專件有限公司 宣衛(wèi)邋周小飛 史美琛;紡錠軸承的維護(hù)和保養(yǎng)方法[N];中國(guó)紡織報(bào);2007年
2 本報(bào)記者 劉聰;深耕高精技術(shù)領(lǐng)域 軸承企業(yè)閃耀制博會(huì)[N];機(jī)電商報(bào);2007年
3 記者 鄭惠華 通訊員 楊勝敏;德龍公司軋鋼廠自制設(shè)備搞節(jié)約[N];河北經(jīng)濟(jì)日?qǐng)?bào);2006年
4 本報(bào)記者 王淑梅;創(chuàng)新風(fēng)電 持續(xù)動(dòng)力[N];機(jī)電商報(bào);2010年
5 陜西省漢中市宇星電力電子學(xué)校教師 郭秦漢;三相異步電動(dòng)機(jī)的維護(hù)常識(shí)[N];電子報(bào);2008年
6 ;SKF應(yīng)用于連鑄的最新解決方案[N];世界金屬導(dǎo)報(bào);2011年
7 潘杰宗;立磨磨輥軸承性能分析[N];中國(guó)建材報(bào);2011年
8 張海鵬 王世鋒;我國(guó)軸承技術(shù)裝備水平不斷提高[N];中國(guó)冶金報(bào);2011年
9 車尚禮;滾動(dòng)軸承損壞的原因及正確裝配方法[N];山東科技報(bào);2000年
相關(guān)博士學(xué)位論文 前9條
1 武哲;旋轉(zhuǎn)機(jī)械故障診斷與預(yù)測(cè)方法及其應(yīng)用研究[D];北京交通大學(xué);2016年
2 張尚斌;列車軸承軌邊聲學(xué)診斷中故障聲譜識(shí)別的時(shí)變陣列分析技術(shù)研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
3 王楠;基于分形—小波的低速軸承磨損故障物理特征研究[D];東北大學(xué);2008年
4 陳錦江;軸承數(shù)字化設(shè)計(jì)及其在高速陶瓷球軸承結(jié)構(gòu)設(shè)計(jì)中的應(yīng)用[D];天津大學(xué);2004年
5 劉方;非平穩(wěn)運(yùn)行時(shí)列車輪對(duì)軸承道旁聲學(xué)故障診斷方法研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
6 于永o,
本文編號(hào):2033442
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2033442.html