天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 工程博士論文 >

碳納米管的功能化及其對(duì)PMMA骨水泥熱學(xué)和力學(xué)性能影響的研究分析

發(fā)布時(shí)間:2018-06-17 20:02

  本文選題:PMMA骨水泥 + 碳納米管。 參考:《山東大學(xué)》2015年博士論文


【摘要】:PMMA骨水泥是由粉末狀的聚甲基丙烯酸甲脂(PMMA)和液態(tài)單質(zhì)的甲基丙烯酸甲酯(MMA)發(fā)生聚合反應(yīng)生成的一種高分子共聚物。PMMA骨水泥能牢固的固定人工移植體,并具有良好的手術(shù)可操作性,因此被看作是髖關(guān)節(jié)置換、膝關(guān)節(jié)置換及牙科等手術(shù)的“黃金標(biāo)準(zhǔn)”。但是,PMMA骨水泥的抗拉強(qiáng)度(24~50MPa)遠(yuǎn)低于其抗壓強(qiáng)度(73-120MPa),導(dǎo)致骨水泥在承受較大荷載時(shí)容易出現(xiàn)脆性斷裂。在循環(huán)荷載下,PMMA骨水泥殼與宿主骨的界面,或者骨水泥殼與移植體的界面,容易產(chǎn)生疲勞裂紋,引起疲勞性斷裂。同時(shí),PMMA骨水泥的聚合反應(yīng)是一個(gè)高發(fā)熱反應(yīng),平均每克甲基丙烯酸甲酯(MMA)釋放大約554焦耳的熱量,局部溫度高達(dá)80-120℃,比人體正常的許可溫度(50-60℃)高出30~40℃,容易造成骨水泥附近的人體組織的熱壞死。碳納米管(CNT)擁有優(yōu)異的物理和力學(xué)性能而被認(rèn)為是復(fù)合材料的理想增強(qiáng)相,已成為當(dāng)前最吸引科學(xué)界眼球的材料。CNT能賦予復(fù)合材料許多新的功能,可以很好的代替碳纖維等傳統(tǒng)材料,充當(dāng)骨水泥材料的增強(qiáng)體,發(fā)展成具有導(dǎo)熱性良好、抗彎以及耐疲勞等多項(xiàng)功能的碳納米管/骨水泥(CNT/PMMA)復(fù)合材料。但是,碳納米管間的范德華力使得碳管極易團(tuán)聚纏繞在一起,不容易被均勻分散在骨水泥基體中,影響了與基體的界面結(jié)合強(qiáng)度,嚴(yán)重的限制了碳納米管優(yōu)異性能的發(fā)揮。如何將CNT均勻的分散到骨水泥基體中,成為首先要解決的關(guān)鍵問題。本文首先采用UV/Fenton 3步純化法清除原始碳管攜帶的無定型碳和催化劑等雜質(zhì),然后采用綠色的功能化方法對(duì)碳納米管進(jìn)行修飾改性,即利用葡萄糖水熱處理過程中形成的芳香族化合物成功的在碳納米管的表面織上了一層納米尺度的包覆層,改變了傳統(tǒng)的聚合物單體的方法來對(duì)碳納米管進(jìn)行功能化。經(jīng)過拉曼光譜表征,水熱處理后的碳納米管在1580cm-1處表現(xiàn)出特征強(qiáng)峰,證明碳納米管的結(jié)構(gòu)并未受到破壞。經(jīng)傅里葉紅外光譜表征,在碳納米管紅外光譜圖上的1211 cm-1處、1601 cm-1處和1736 cm-1處均表現(xiàn)出強(qiáng)峰,分別代表碳納米管表面成功的攜帶上了羥基(-OH),羰基(C=0)和羧基(-COOH)等功能性官能團(tuán)。通過Origin 9.0和XPSPEAK 4.1軟件對(duì)功能化前后碳納米管表面的C元素和O元素的XPS精細(xì)譜圖進(jìn)行分峰處理,可以判斷碳納米管表面的C1s峰被分為五個(gè)峰,分別為C1-C5峰,其中C3峰(286.2eV)歸屬為羥基,C4峰(287.5eV)歸屬為酮羰基,C5峰(289.4 eV)為歸屬為羧基。碳納米管表面的O1s峰分為01-03三個(gè)峰,其中,O1(531.5 eV)可歸屬為醌或酮羰基,02(532.6 eV)可歸屬為酯或酸酐中的O-C=O基團(tuán),而03(533.7eV)可歸屬為醚或酚中的C-O基團(tuán),結(jié)果表明CNT經(jīng)葡萄糖水熱法處理后,在其管壁上成功的枝接上了羥基,羰基和羧基等功能性官能團(tuán)。通過TEM透射電鏡掃描的圖像,可以測(cè)得碳管表面成功的被織上了一層12nm~22nm厚的親水性的碳包覆層。采用超聲波震蕩的方法將功能化的碳納米管與MMA溶液混合均勻后,加入PMMA粉末以及BPO和DMPT等催化劑,發(fā)生聚合反應(yīng)生成CNT/PMMA骨水泥。根據(jù)丙烯酸骨水泥的國(guó)際標(biāo)準(zhǔn)ISO-5833-2002的規(guī)定,測(cè)定了骨水泥在摻入碳管后的聚合最高溫度、熱壞死系數(shù)、固化時(shí)間和導(dǎo)熱系數(shù)等熱學(xué)性能參數(shù)。對(duì)測(cè)試數(shù)據(jù)進(jìn)行方差分析(檢驗(yàn)假設(shè)a=0.01),實(shí)驗(yàn)結(jié)果表明:碳納米管能極大的改善骨水泥的熱學(xué)性能。根據(jù)ASTM E399-06和ASTMF2118-01a的規(guī)范要求,對(duì)骨水泥的抗壓、抗彎、斷裂韌性和疲勞強(qiáng)度進(jìn)行了測(cè)試,并借助于威布爾(Weibull) 3參數(shù)分析方法對(duì)骨水泥的疲勞壽命建立了預(yù)測(cè)模型。對(duì)Paris公式進(jìn)行改進(jìn),進(jìn)行了帶有預(yù)制裂紋的CNT/PMMA復(fù)合骨水泥彎曲疲勞試驗(yàn),得出疲勞裂紋擴(kuò)展的重要參數(shù)C、m值,研究了摻加碳納米管后骨水泥的疲勞裂紋的擴(kuò)展規(guī)律。力學(xué)測(cè)試結(jié)果表明,當(dāng)摻加質(zhì)量分?jǐn)?shù)3%的的碳管后,跟標(biāo)準(zhǔn)試件(未摻加碳管的骨水泥)相比,CNT/PMMA骨水泥的抗壓強(qiáng)度增長(zhǎng)幅度較小,但是抗彎強(qiáng)度、斷裂韌性和疲勞壽命均有顯著性的提高,疲勞裂紋的擴(kuò)展速率明顯趨緩。通過對(duì)碳納米管的功能化處理,提高了碳納米管與骨水泥之間的界面結(jié)合強(qiáng)度,優(yōu)化骨水泥的熱學(xué)和力學(xué)性能,獲得了具有良好力學(xué)性能的碳納米管/骨水泥復(fù)合材料。
[Abstract]:PMMA bone cement is a polymer copolymer of powdered polymethyl methacrylate (PMMA) and liquid monosaplastic methyl methacrylate (MMA). A polymer copolymer of high molecular weight,.PMMA bone cement can be firmly fixed, and has good operative maneuverability. Therefore, it is regarded as hip replacement, knee replacement and dentistry. However, the tensile strength of PMMA bone cement (24 ~ 50MPa) is far lower than its compressive strength (73-120MPa), which leads to brittle fracture of the bone cement when it bears large load. Under cyclic loading, the interface between the PMMA bone cement shell and the host bone, or the interface between the bone cement shell and the transplant, is easy to produce fatigue cracks. It causes fatigue fracture. At the same time, the polymerization of PMMA bone cement is a high fever reaction, with an average of about 554 joules per gram of methyl methacrylate (MMA). The local temperature is up to 80-120 degrees C, higher than the normal permissive temperature of the human body (50-60 degrees C) at 30~40 degrees C, which is easy to cause thermal necrosis of human tissues near the bone cement. CNT, which has excellent physical and mechanical properties, is considered to be the ideal enhancement phase of composite materials. It has become the most attractive material to attract scientific attention..CNT can give the composite a lot of new functions. It can replace the traditional materials such as carbon fiber, and act as an enhancement of bone water mud material. It has developed into good thermal conductivity and resistant to heat. Carbon nanotubes / bone cement (CNT/PMMA) composite materials such as bending and fatigue resistance, however, the Fan Dehua force between carbon nanotubes makes the carbon nanotubes very easy to be entangled together, not easily dispersed in the bone cement matrix, affecting the bonding strength with the matrix, which seriously restricts the excellent performance of the carbon nanotubes. How to disperse the CNT evenly into the bone cement matrix is the key problem to be solved first. Firstly, this paper uses the UV/Fenton 3 step purification method to clear the amorphous carbon and catalyst carried by the original carbon tube, and then modifies the carbon nanotubes by the green functionalization method, that is, using the glucose water heat treatment process. The formation of aromatic compounds successfully woven a layer of nano scale coating on the surface of carbon nanotubes, changing the traditional method of polymer monomers to function carbon nanotubes. Through Raman spectroscopy, the carbon nanotubes after hydrothermal treatment showed a strong characteristic peak at 1580cm-1, proving the structure of carbon nanotubes and the structure of carbon nanotubes. The FTIR was characterized by a strong peak at 1211 cm-1, 1601 cm-1 and 1736 cm-1 on the carbon nanotube infrared spectrum. The functional functional groups such as the hydroxyl group (-OH), carbonyl (C=0) and carboxyl (-COOH) on the surface of the carbon nanotube were successfully carried on the surface of the carbon nanotube. The functions of the Origin 9 and XPSPEAK 4.1 software were obtained. The C element and the XPS fine spectrum of the O element on the surface of the carbon nanotube are divided into five peaks, which can be divided into five peaks, respectively, the C3 peak (286.2eV) belongs to the hydroxyl group, C4 peak (287.5eV) belongs to the carbonyl group of ketone, and the C5 peak (289.4 eV) belongs to the carboxyl group. The O1s peaks on the surface of the carbon nanotubes are divided into those of the carbon nanotubes. 03 three peaks, in which O1 (531.5 eV) can belong to quinone or ketone carbonyl, 02 (532.6 eV) can belong to the O-C=O group in ester or anhydride, and 03 (533.7eV) can belong to the C-O group in ether or phenol. The results show that after CNT is treated by glucose hydrothermic method, the functional groups such as hydroxyl, carbonyl and carboxyl groups on the wall of the tube are successfully connected to the functional groups such as carboxyl and carboxyl groups. Through TEM, the functional groups such as carboxyl and carboxyl groups are attached to the wall of the tube. A layer of 12NM to 22nm thick hydrophilic carbon coating was successfully woven on the surface of the carbon tube by transmission electron microscopy. The functionalized carbon nanotubes were mixed evenly with the MMA solution by ultrasonic oscillation, and the PMMA powder and the BPO and DMPT catalysts were added to produce the CNT/PMMA cement. According to the international standard ISO-5833-2002 of acrylic bone cement, the maximum temperature, thermal necrosis coefficient, curing time and thermal conductivity of the cement after adding carbon tube are measured. The test data is analyzed by variance analysis (test hypothesis a=0.01). The experimental results show that carbon nanotubes can greatly improve the heat of bone cement. According to the specifications of ASTM E399-06 and ASTMF2118-01a, the compression, bending, fracture toughness and fatigue strength of bone cement were tested. The prediction model of fatigue life of bone cement was established by means of Weibull (Weibull) 3 parameter analysis method. The Paris common formula was improved, and the CNT/PMMA complex with prefabricated cracks was carried out. The important parameters C and m of the fatigue crack propagation are obtained by the bending fatigue test of the bone cement, and the fatigue crack propagation law of the cement with carbon nanotubes is studied. The mechanical test results show that the compressive strength of CNT/PMMA cement is increased compared with the standard specimen (unmixed tube bone cement) after adding the mass fraction of 3% carbon tube. The long range is smaller, but the flexural strength, fracture toughness and fatigue life are improved significantly, and the propagation rate of fatigue crack is obviously slowed down. Through the functionalization of carbon nanotubes, the interfacial bonding strength between carbon nanotubes and bone cement is improved, the thermal and mechanical properties of the bone cement are optimized, and good mechanical properties have been obtained. Able carbon nanotube / bone cement composite.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ172.1;TQ127.11;TB383.1

【共引文獻(xiàn)】

相關(guān)期刊論文 前10條

1 傅平豐;張彭義;;X射線光電子能譜法研究UV_(254nm)光催化、O_3強(qiáng)化UV_(254nm)光催化和真空紫外光催化降解甲醛中Pt-TiO_2薄膜的表面性質(zhì)(英文)[J];催化學(xué)報(bào);2014年02期

2 盧艷;宋英;孫秋;王福平;;導(dǎo)電聚苯胺納米復(fù)合熱電材料研究進(jìn)展[J];功能材料;2014年02期

3 吳熔琳;邵錚錚;常勝利;張學(xué)驁;李和平;李新華;;不同參數(shù)多壁碳納米管的拉曼光譜研究[J];光譜學(xué)與光譜分析;2014年04期

4 趙文靜;麥永懿;張煒;葉純麟;李志;沈賢婷;;PE UHMW/MWCNT復(fù)合纖維的制備及性能研究[J];工程塑料應(yīng)用;2014年05期

5 江大志;鞠蘇;張鑒煒;肖加余;;復(fù)合材料結(jié)構(gòu)輕量化方法及技術(shù)[J];玻璃鋼/復(fù)合材料;2014年09期

6 周亮;羅發(fā);孫志平;張勇;;等離子噴涂CNTs/Al_2O_3復(fù)合涂層力學(xué)性能研究[J];材料導(dǎo)報(bào);2014年18期

7 胡天航;郭凱;郭建偉;解孝林;;納米鉑在碳納米管的原位擔(dān)載及其電化學(xué)性能[J];功能材料;2014年21期

8 Gang Chen;Xiao-hong Zhang;喬金j;;Effect of Nano-fillers on Conductivity of Polyethylene/Low Melting Point Metal Alloy Composites[J];Chinese Journal of Polymer Science;2015年03期

9 呂維揚(yáng);葉維娟;傅華康;杜淼;鄭強(qiáng);;聚乙烯醇/層狀雙金屬氫氧化物復(fù)合膜的原位制備及其性能研究[J];高分子學(xué)報(bào);2015年06期

10 徐新宇;翟玉春;;側(cè)鏈型液晶聚合物接枝碳納米管的制備及性能研究[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年08期

相關(guān)會(huì)議論文 前2條

1 胡翔;俞洋;程昭;;碳納米管電極電催化降解水中典型頭孢類抗生素的循環(huán)伏安分析[A];2013中國(guó)環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第五卷)[C];2013年

2 李東旭;龔啟春;費(fèi)國(guó)霞;夏和生;;聚合物/碳納米管導(dǎo)電復(fù)合材料的結(jié)構(gòu)控制[A];2014年全國(guó)高分子材料科學(xué)與工程研討會(huì)學(xué)術(shù)論文集(下冊(cè))[C];2014年

相關(guān)博士學(xué)位論文 前10條

1 廉鎖原;無機(jī)材料的乙醇溶劑熱合成及應(yīng)用[D];蘇州大學(xué);2013年

2 梁丹;甘油選擇性氧化反應(yīng)中負(fù)載型貴金屬催化劑的研究[D];浙江大學(xué);2012年

3 蘇艷霞;碳納米管負(fù)載錳氧化物的NH_3-SCR反應(yīng)性能及機(jī)理研究[D];華南理工大學(xué);2013年

4 諶春林;氧化和摻氮碳納米管的制備、表征及丙烷氧化脫氫催化性能研究[D];華南理工大學(xué);2013年

5 羅金;碳納米管及摻氮碳納米管液相催化氧化苯甲醇和乙苯[D];華南理工大學(xué);2013年

6 李艷偉;碳納米管和石墨烯增強(qiáng)PBO復(fù)合纖維的制備及結(jié)構(gòu)與性能研究[D];哈爾濱工業(yè)大學(xué);2013年

7 常云珍;化學(xué)還原石墨烯的制備、組裝及電化學(xué)性能研究[D];山西大學(xué);2013年

8 王海哲;碳納米管增強(qiáng)碳化硅纖維和復(fù)合材料的基礎(chǔ)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2012年

9 徐美紅;甜瓜TILLING平臺(tái)的構(gòu)建及多壁碳納米管與過氧化氫酶互作的研究[D];上海交通大學(xué);2013年

10 李斌;碳材料的輻照及嬗變靶材的制造[D];合肥工業(yè)大學(xué);2013年

相關(guān)碩士學(xué)位論文 前10條

1 石磊;多壁碳納米管/聚苯乙烯—聚氯乙烯復(fù)合材料的電學(xué)性能研究[D];華東師范大學(xué);2013年

2 胡華林;活性炭表面改性及負(fù)載鈀—金催化劑的制備與表征[D];廣西師范學(xué)院;2013年

3 石國(guó)嫻;鹵素?fù)诫s對(duì)多壁碳納米管電學(xué)性能的影響及其導(dǎo)電機(jī)理研究[D];華東師范大學(xué);2013年

4 孫睿;環(huán)氧樹脂納米復(fù)合材料制備及性能研究[D];哈爾濱理工大學(xué);2013年

5 喻慧;超臨界流體輔助碳管分散及超臨界二氧化碳中鉑/石墨烯復(fù)合材料的制備[D];青島科技大學(xué);2013年

6 李春燕;水溶性碳納米管的制備及其應(yīng)用研究[D];青島科技大學(xué);2013年

7 郭唐華;碳納米材料在聚合物中分散方法的研究[D];浙江大學(xué);2014年

8 王秒;碳納米管/聚酰亞胺復(fù)合X射線窗口材料制備與性能研究[D];哈爾濱工業(yè)大學(xué);2014年

9 劉愷然;CdS/P3HT/CNT異質(zhì)結(jié)構(gòu)材料的制備及光電性能研究[D];北京化工大學(xué);2014年

10 旭日;相容性高分子共混物—多壁碳納米管復(fù)合材料的導(dǎo)電性研究[D];華東師范大學(xué);2014年

,

本文編號(hào):2032283

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2032283.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d6a85***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com