電致化學(xué)發(fā)光生化新體系及其分析策略研究
本文選題:電致化學(xué)發(fā)光 + 自增強(qiáng); 參考:《西南大學(xué)》2017年博士論文
【摘要】:電致化學(xué)發(fā)光(Electrochemiluminescence,ECL)以電化學(xué)為基礎(chǔ),通過(guò)電極表面電化學(xué)反應(yīng)導(dǎo)致的化學(xué)發(fā)光現(xiàn)象進(jìn)行特定物質(zhì)的定量分析檢測(cè),其同時(shí)結(jié)合了電化學(xué)的高可控性和化學(xué)發(fā)光法的超靈敏性,極大地提高了分析檢測(cè)方法的性能,并賦予了其獨(dú)特的優(yōu)勢(shì),諸如靈敏度高、線性范圍寬、操作簡(jiǎn)單、可控性強(qiáng)、分析快速簡(jiǎn)便等。近年來(lái),伴隨著納米技術(shù)及生物技術(shù)的快速發(fā)展,電致化學(xué)發(fā)光技術(shù)更是取得了蓬勃的發(fā)展進(jìn)步,作為一種高效、靈敏的分析檢測(cè)技術(shù),在生命分析、環(huán)境監(jiān)測(cè)、食品安全等領(lǐng)域備受關(guān)注。目前,電致化學(xué)發(fā)光材料正朝著高效、綠色、多功能的方向發(fā)展;而電致化學(xué)發(fā)光分析技術(shù)亦正朝著高靈敏、高通量、普適等方向發(fā)展。然而,針對(duì)一些特殊研究體系,現(xiàn)有電致化學(xué)發(fā)光體系尚存在靈敏度不足、檢測(cè)過(guò)程復(fù)雜繁瑣、適用性不強(qiáng)等方面的缺陷;诖,本論文主要從電致化學(xué)發(fā)光檢測(cè)體系的靈敏度、高通量、適用性等方面出發(fā),通過(guò)高效自增強(qiáng)電致化學(xué)發(fā)光技術(shù)、原位酶促反應(yīng)增強(qiáng)、核酸擴(kuò)增放大及高效電致化學(xué)發(fā)光材料等方法提高電致化學(xué)發(fā)光技術(shù)的分析檢測(cè)靈敏度;通過(guò)多元分析、競(jìng)爭(zhēng)反應(yīng)等策略提高電致化學(xué)發(fā)光技術(shù)的適用性。在此基礎(chǔ)上,實(shí)現(xiàn)了多種疾病標(biāo)志物及細(xì)胞功能檢測(cè)研究。本論文的研究工作主要分為以下幾個(gè)部分:1.基于自增強(qiáng)復(fù)合納米材料的超靈敏細(xì)胞傳感器構(gòu)建及其在藥物篩選中的應(yīng)用研究抗癌藥物研究具有極其重要的科學(xué)意義及社會(huì)價(jià)值,尤其是高效、低廉、特異、甚至個(gè)體化的抗癌藥物;诩(xì)胞凋亡分析的藥物篩選評(píng)價(jià)系統(tǒng)亟需更為靈敏、準(zhǔn)確、有效、便捷的分析檢測(cè)技術(shù)。靈敏度高、反應(yīng)可控性好、便捷低廉的電致化學(xué)發(fā)光技術(shù)具有極大的潛在應(yīng)用價(jià)值,然而電致化學(xué)發(fā)光材料及共反應(yīng)劑等的生物毒性、分析檢測(cè)方法靈敏度等方面尚需進(jìn)一步改善。本研究提出了一種自增強(qiáng)電致化學(xué)發(fā)光納米材料的制備方案。通過(guò)羧基化聯(lián)吡啶釕與氨基側(cè)鏈修飾的甲氧基硅烷偶聯(lián),制得功能化的二氧化硅納米材料前體,其中聯(lián)吡啶釕作為電致化學(xué)發(fā)光中心,氨基側(cè)鏈作為共反應(yīng)試劑。在此基礎(chǔ)上,通過(guò)堿性條件下水解作用,成功制得自增強(qiáng)電致化學(xué)發(fā)光納米材料,并成功將其應(yīng)用于基于細(xì)胞凋亡分析的抗腫瘤藥效評(píng)價(jià)系統(tǒng)的構(gòu)建,實(shí)現(xiàn)了高效、快速、便捷的抗腫瘤藥效評(píng)價(jià)。實(shí)驗(yàn)研究同時(shí)采用乳腺癌腫瘤細(xì)胞(MDA-MB-231)和抗腫瘤藥物(紫杉醇)作為模型研究了所構(gòu)建的抗腫瘤藥效評(píng)價(jià)系統(tǒng)的適用性,取得了較好的分析效果。該工作提出了自增強(qiáng)電致化學(xué)發(fā)光納米材料的設(shè)計(jì)構(gòu)建方式,并對(duì)其自增強(qiáng)機(jī)理進(jìn)行了相應(yīng)的研究;同時(shí),實(shí)現(xiàn)了電致化學(xué)發(fā)光分析技術(shù)在亟需的藥物篩選評(píng)價(jià)系統(tǒng)中的應(yīng)用,進(jìn)一步拓展了電致化學(xué)發(fā)光分析技術(shù)的研究應(yīng)用,為進(jìn)一步的電致化學(xué)發(fā)光技術(shù)及藥物篩選評(píng)價(jià)等提供參考借鑒。2.基于多元分析的多組份電致化學(xué)發(fā)光分析策略研究電致化學(xué)發(fā)光分析技術(shù)由于其低背景、高靈敏度、寬線性范圍、低耗用等突出優(yōu)點(diǎn)而倍受關(guān)注。然而,截至到目前為止,絕大多數(shù)的電致化學(xué)發(fā)光分析僅僅能在同一界面上實(shí)現(xiàn)單一目標(biāo)物的定量分析。而臨床檢測(cè)、環(huán)境分析、食品安全等方面迫切需求一種更為高效、靈敏的多組份電致化學(xué)發(fā)光分析檢測(cè)技術(shù)。本研究設(shè)計(jì)了一種基于多元分析的多組份電致化學(xué)發(fā)光分析策略,結(jié)合以雜交連鎖反應(yīng)-滾環(huán)擴(kuò)增反應(yīng)為基礎(chǔ)的級(jí)聯(lián)放大策略,構(gòu)建一種高靈敏的多組份電致化學(xué)發(fā)光分析系統(tǒng)。采用心肌損傷類標(biāo)志物,N末端B型利鈉肽原和肌鈣蛋白I為檢測(cè)模型,分別以魯米諾和聯(lián)吡啶釕為信號(hào)探針,研究討論了該方法的分析檢測(cè)性能。其中,通過(guò)多元分析有效地解決了不同電致化學(xué)發(fā)光信號(hào)探針間相互影響的關(guān)鍵問(wèn)題;采用HCR-RCA為基礎(chǔ)的級(jí)聯(lián)放大策略有效地提高了檢測(cè)靈敏度,實(shí)現(xiàn)了同一界面多組份的高靈敏分析檢測(cè),為進(jìn)一步構(gòu)建高通量的電致化學(xué)發(fā)光檢測(cè)系統(tǒng)奠定了良好的基礎(chǔ)。3.基于競(jìng)爭(zhēng)法的電致化學(xué)發(fā)光免疫傳感技術(shù)用于單一界面多目標(biāo)物比率分析的研究現(xiàn)今,采用抗腫瘤藥物來(lái)消滅腫瘤細(xì)胞仍作為抗擊腫瘤的一種重要手段而備受關(guān)注。然而,由于長(zhǎng)時(shí)間使用藥物等易導(dǎo)致腫瘤細(xì)胞耐藥而出現(xiàn)療效差,甚至無(wú)療效的情況。若能在腫瘤細(xì)胞耐藥早期,通過(guò)調(diào)整治療方案,則可以有效地避免或減少細(xì)胞耐藥,然而尚缺乏高效、高靈敏、準(zhǔn)確的早期細(xì)胞耐藥偵檢系統(tǒng)。電致化學(xué)發(fā)光分析作為一種高效、靈敏的潛在可用分析技術(shù)而備受關(guān)注。通常細(xì)胞耐藥性可以通過(guò)P糖蛋白表達(dá)情況來(lái)確定,而對(duì)于P糖蛋白表達(dá)分析而言,不僅僅需要對(duì)P糖蛋白的高靈敏定量分析,同時(shí)需要輔助以細(xì)胞計(jì)數(shù)或者輔助以另外一種恒定表達(dá)蛋白的高靈敏定量分析作為對(duì)照,通過(guò)計(jì)算P糖蛋白與恒定表達(dá)蛋白的濃度比值來(lái)實(shí)現(xiàn)P糖蛋白的表達(dá)分析。雖然采用如前所述的基于多元分析的多組份電致化學(xué)發(fā)光分析策略可以實(shí)現(xiàn)了同一界面上多種目標(biāo)物的同時(shí)檢測(cè)。但是,多元分析仍比較耗時(shí),亟需更為便捷有效的檢測(cè)方式實(shí)現(xiàn)細(xì)胞耐藥分析。值得注意的是,通過(guò)蛋白質(zhì)表達(dá)來(lái)評(píng)估細(xì)胞耐藥程度,僅僅需要耐藥相關(guān)蛋白與恒定表達(dá)蛋白的濃度比值即可,而不需要兩者的準(zhǔn)確濃度。本研究通過(guò)基于免疫識(shí)別的目標(biāo)物轉(zhuǎn)換結(jié)合滾環(huán)擴(kuò)增信號(hào)放大策略和電致化學(xué)發(fā)光傳感器表面修飾核酸的競(jìng)爭(zhēng)反應(yīng)構(gòu)建了一種用于比率分析的高靈敏電致化學(xué)發(fā)光分析策略,以P糖蛋白和甘油醛-3-磷酸脫氫酶為檢測(cè)模型評(píng)估腫瘤細(xì)胞耐藥程度。首先,磁珠表面的免疫識(shí)別反應(yīng),以?shī)A心法檢測(cè)模式,通過(guò)固定于磁珠表面生物素化抗體分別特異性識(shí)別P糖蛋白和甘油醛-3-磷酸脫氫酶,并進(jìn)一步結(jié)合核酸標(biāo)記二抗,實(shí)現(xiàn)目標(biāo)物轉(zhuǎn)化;為了提高分析檢測(cè)靈敏度,采用滾環(huán)擴(kuò)增放大策略,以標(biāo)記于抗體上的核酸為引發(fā)鏈,延伸得到以滾環(huán)為模板的重復(fù)序列,并經(jīng)DSN酶剪切實(shí)現(xiàn)1㑳N目標(biāo)物擴(kuò)增放大;剪切獲得的重復(fù)序列部分一致,能夠與電極表面的捕獲序列形成競(jìng)爭(zhēng)反應(yīng),并進(jìn)一步結(jié)合電致化學(xué)發(fā)光材料,聯(lián)吡啶釕標(biāo)記信號(hào)探針,通過(guò)電致化學(xué)發(fā)光信號(hào)指示競(jìng)爭(zhēng)反應(yīng)結(jié)果,進(jìn)而實(shí)現(xiàn)P糖蛋白和甘油醛-3-磷酸脫氫酶的比率檢測(cè),實(shí)現(xiàn)對(duì)細(xì)胞耐藥程度的評(píng)估。該比率分析策略亦可推廣于電化學(xué)、熒光、化學(xué)發(fā)光法等對(duì)于多種目標(biāo)物,諸如蛋白、核酸等的高效、便捷、高靈敏的比率分析測(cè)定,同時(shí)提供了一種有效策略用于生化分析、臨床診斷,尤其是細(xì)胞功能測(cè)定等。4.基于時(shí)間調(diào)控的檢測(cè)范圍可調(diào)式電致化學(xué)發(fā)光技術(shù)研究近年來(lái),高靈敏電致化學(xué)發(fā)光分析技術(shù)更是得到了長(zhǎng)足的發(fā)展進(jìn)步。然而,截至目前為止,絕大多數(shù)的電致化學(xué)發(fā)光分析技術(shù)由于修飾界面單一,僅僅能夠?qū)崿F(xiàn)固定靈敏度及固定檢測(cè)范圍內(nèi)的目標(biāo)物分析。由于同一檢測(cè)目標(biāo)物在不同樣本中的濃度差異懸殊,通常電致化學(xué)發(fā)光分析技術(shù)難于直接應(yīng)用于樣本分析檢測(cè),而繁瑣的分離富集/稀釋等操作成為定量分析的隱性必需內(nèi)容之一,這無(wú)疑增加了分析檢測(cè)工作量,并在一定程度上降低了分析檢測(cè)的準(zhǔn)確性。以Pb2+離子的分析檢測(cè)作為模型,本研究通過(guò)在電極表面的核酸特異性雜交,層層組裝核酸網(wǎng)狀結(jié)構(gòu),并于網(wǎng)狀結(jié)構(gòu)內(nèi)部設(shè)計(jì)DNA酶,且于網(wǎng)狀結(jié)構(gòu)的雙鏈內(nèi)鑲嵌電致化學(xué)發(fā)光材料構(gòu)建針對(duì)Pb2+離子的可調(diào)式電致化學(xué)發(fā)光傳感器。由Pb2+離子介導(dǎo)的DNA酶循環(huán)剪切所組裝的核酸網(wǎng)狀結(jié)構(gòu),同時(shí)釋放電致化學(xué)發(fā)光材料,導(dǎo)致電致化學(xué)發(fā)光信號(hào)降低,以此實(shí)現(xiàn)對(duì)Pb2+離子的定量分析。而剪切效率不僅與Pb2+離子濃度相關(guān),同時(shí)與反應(yīng)時(shí)間相關(guān),由此通過(guò)控制反應(yīng)時(shí)間以調(diào)節(jié)檢測(cè)線性范圍、檢測(cè)靈敏度等。實(shí)驗(yàn)研究所構(gòu)建的可調(diào)式電致化學(xué)發(fā)光策略亦可推廣適用于其他諸如蛋白、核酸等的靈敏可調(diào)式檢測(cè),為環(huán)境安全及臨床檢驗(yàn)提供一種新型的分析策略。5.基于銥配合物納米材料及原位酶放大的電致化學(xué)發(fā)光傳感器研究三苯基吡啶銥配合物作為一種高量子轉(zhuǎn)化效率、高電子轉(zhuǎn)移效率的優(yōu)良電致化學(xué)發(fā)光材料,有望以此為基礎(chǔ)構(gòu)建更高檢測(cè)靈敏度的電致化學(xué)發(fā)光技術(shù)。然而其水溶性差、難于標(biāo)記等缺陷限制了其在電致化學(xué)發(fā)光傳感技術(shù)領(lǐng)域的廣泛應(yīng)用。本研究采用三苯基吡啶銥配合物摻雜二氧化硅納米材料實(shí)現(xiàn)了電致化學(xué)發(fā)光材料的高效固載,并極大程度地改善了其水溶性。實(shí)驗(yàn)研究以心衰標(biāo)志物,N末端B型利鈉肽原作為研究模型,探究了基于銥配合物納米材料及原位酶放大的電致化學(xué)發(fā)光傳感器的性能。電致化學(xué)發(fā)光傳感器采用Nafion分散三苯基吡啶銥配合物摻雜二氧化硅納米材料包覆于電極表面,并進(jìn)一步偶聯(lián)固定抗N末端B型利鈉肽原抗體來(lái)構(gòu)建;诖,所制備的電致化學(xué)發(fā)光傳感器具有較強(qiáng)的電致化學(xué)發(fā)光信號(hào)。當(dāng)檢測(cè)樣本中含有N末端B型利鈉肽原時(shí),其能夠通過(guò)特異性免疫識(shí)別結(jié)合于電極表面,并進(jìn)一步結(jié)合葡萄糖氧化酶標(biāo)記的二抗。通過(guò)葡萄糖氧化酶催化葡萄糖產(chǎn)生過(guò)氧化氫對(duì)電致化學(xué)發(fā)光信號(hào)的猝滅作用實(shí)現(xiàn)目標(biāo)物N末端B型利鈉肽原的定量分析檢測(cè)。實(shí)驗(yàn)研究所采用的電致化學(xué)發(fā)光分析策略亦可適用于以其他目標(biāo)物,諸如核酸、細(xì)胞等物質(zhì)的高靈敏分析檢測(cè)應(yīng)用。
[Abstract]:Electrochemiluminescence (Electrochemiluminescence, ECL) is based on electrochemistry and quantificationally analyses specific substances by electrochemiluminescence caused by electrochemical reaction on the surface of the electrode. It combines the high controllability of electrochemistry and the hyper sensitivity of chemiluminescence, which greatly improves the performance of the analytical method. It has given its unique advantages, such as high sensitivity, wide linear range, simple operation, strong controllability, and rapid and simple analysis. In recent years, with the rapid development of nanotechnology and biotechnology, electrochemiluminescence technology has made vigorous progress, as a highly efficient, sensitive analysis and detection technology, in life analysis, ring At present, electrochemiluminescence materials are developing in the direction of high efficiency, green and multifunction, and electrochemiluminescence analysis technology is developing towards high sensitivity, high throughput and universality. However, the electrochemiluminescence system is still sensitive to some special research systems. This paper is based on the sensitivity, high throughput and applicability of the electrochemiluminescence detection system, through high efficiency autofilt electrochemiluminescence technology, in situ enzymatic reaction enhancement, nucleic acid amplification amplification and high efficiency electrochemiluminescence materials and other aspects. The method improves the sensitivity of electrochemiluminescence technology and improves the applicability of electrochemiluminescence (electrochemiluminescence) by multivariate analysis and competitive reaction. On this basis, the study of various diseases markers and cell function detection is realized. The research work of this paper is divided into the following parts: 1. based on the self enhancement composite nano The construction of super sensitive cell sensor and its application in drug screening are of great scientific significance and social value, especially high efficiency, low, specific, and even individualized anticancer drugs. The drug screening evaluation system based on apoptosis analysis needs more sensitive, accurate, effective and convenient. The electrochemiluminescence technology with high sensitivity, good reaction controllability and convenient and inexpensive electrochemiluminescence has great potential application value. However, the biological toxicity of electrochemiluminescence materials and co reactants and the sensitivity of analytical methods need to be further improved. A kind of self enhanced electrochemiluminescence is proposed in this study. The preparation of nanomaterials is prepared by coupling of carboxyl bipyridine ruthenium with amino side chain modified methoxy silane to prepare functionalized silica nanomaterial precursors, in which Ru is an electrochemiluminescence center and an amino side chain is used as a co reaction reagent. Enhanced electrochemiluminescence nanomaterials have been successfully applied to the construction of an anti-tumor efficacy evaluation system based on apoptosis analysis, which has achieved efficient, rapid and convenient evaluation of antitumor efficacy. The experimental study was built on the use of breast cancer tumor cells (MDA-MB-231) and antitumor drugs (paclitaxel) as models. The application of the anti-tumor efficacy evaluation system has achieved good results. The design and construction of self enhanced electrochemiluminescence nanomaterials were put forward, and the self enhancement mechanism was studied. At the same time, the application of electrochemiluminescence analysis technology in the urgent drug screening evaluation system was realized. One step extended the research and application of electrochemiluminescence analysis technology to provide reference for further electrochemiluminescence technology and drug screening and evaluation..2. based on multicomponent electrochemiluminescence analysis based on multivariate analysis to study electrochemiluminescence analysis technology, because of its low background, high sensitivity, wide linear range and low consumption. So far, most of the electrochemiluminescence analysis can only achieve a single target quantitative analysis at the same interface, and a more efficient and sensitive multi component electrochemiluminescence detection technology is urgently needed in clinical detection, environmental analysis, food safety and so on. In this study, a multicomponent electrochemiluminescence analysis strategy based on multivariate analysis was designed, and a highly sensitive multicomponent electrochemiluminescence analysis system was constructed with a cascade amplification strategy based on the hybridization chain reaction rolling ring amplification reaction. The N terminal B type natriuretic peptide and the troponin I were used. The analysis and detection performance of the method is discussed with Lumino and bipyridine ruthenium as the signal probe, and the key problem of mutual influence between different electrochemiluminescence signal probes is effectively solved by multivariate analysis. The detection sensitivity is effectively improved by using the HCR-RCA based cascade amplification strategy. The high sensitivity analysis and detection of multiple components at the same interface have laid a good foundation for the further construction of high throughput electrochemiluminescence detection system..3. based on competition based electrochemiluminescence immunosensing technology is applied to the analysis of the ratio of multiple targets in a single interface. Nowadays, the use of antitumor drugs to eliminate tumor cells is still done by using antitumor drugs. However, it is not effective and sensitive, however, to avoid or reduce the drug resistance in the early stage of cancer cell resistance. An accurate early cell resistance detection system. Electrochemiluminescence analysis has attracted much attention as a highly efficient, sensitive and potentially useful analytical technique. Generally, cell resistance can be determined by the expression of P glycoprotein. For the analysis of P glycoprotein expression, it is not only required to be highly sensitive and quantitative analysis of P glycoprotein, but also need to be analyzed. The analysis of the expression of P glycoprotein by calculating the ratio of the concentration of P glycoprotein to the constant expressed protein was aided by a cell count or assisted by a high sensitivity quantitative analysis of a constant expressed protein. Although the multi component electrochemiluminescence analysis strategy, as described earlier, could be implemented, the strategy of multicomponent Electrochemiluminescence analysis, as described earlier, could be realized. At the same time, multiple targets are detected at the same interface. However, the multivariate analysis is still more time-consuming and needs more convenient and effective detection methods to realize cell resistance analysis. It is worth noting that the degree of cell resistance is evaluated by protein expression, only the concentration ratio of drug resistance related protein and constant expression protein is needed, but it is not necessary. In this study, a highly sensitive electrochemiluminescence analysis strategy for ratio analysis was constructed by using immune recognition based target conversion combined with rolling ring amplification signal amplification strategy and the competitive reaction of electrochemiluminescence sensor surface modified nucleic acid. The P glycoprotein and glyceraldehyde -3- phosphate dehydrogenase was used as a method. The detection model evaluated the degree of tumor cell resistance. First, the immuno recognition reaction on the surface of the magnetic beads was detected by the sandwich method, and the P glycoprotein and glyceraldehyde -3- phosphate dehydrogenase was identified by the biotinylated antibodies fixed on the surface of the magnetic beads, and the target transformation was further combined with the nucleic acid marker two, in order to improve the analysis and detection. Sensitivity, using the rolling ring amplification strategy, the nucleic acid marked on the antibody as the trigger chain, the repeat sequence of the roll ring as the template, and the amplification and amplification of the 1? N target by the DSN enzyme shear; the repeated sequence parts of the shear are consistent, which can form a competitive reaction with the capture sequence on the electrode surface, and further combine the electromotive force. Chemiluminescent material, bipyridine ruthenium labeled signal probe, indicated the ratio of P glycoprotein and glyceraldehyde -3- phosphate dehydrogenase by electrochemiluminescence signal, and realized the evaluation of the degree of cell resistance. The ratio analysis strategy can also be extended to various targets, such as electrochemistry, fluorescence, chemiluminescence, etc. High efficiency, convenient and highly sensitive ratio analysis, such as protein, nucleic acid, and so on, provides an effective strategy for biochemical analysis, clinical diagnosis, especially cell function determination,.4. based on time regulated detection range of tunable electrochemiluminescence technology, high sensitivity electrochemiluminescence analysis technology is more important. However, so far, most of the electrochemiluminescence analysis techniques have only been able to realize the target analysis in fixed sensitivity and fixed detection range due to the single modification interface. The electrochemiluminescence is usually caused by the difference in the concentration of the same target in different samples. Analysis technology is difficult to be applied directly to sample analysis and detection, and the complicated separation and enrichment / dilution operation becomes one of the recessive content of quantitative analysis, which undoubtedly increases the workload of analysis and detection, and reduces the accuracy of analysis and detection to a certain extent. The analysis of Pb2+ ions is used as a model. This study is carried out through the electrode table. The nucleic acid specific hybridization, the reticular formation of nucleic acid reticulation, and the design of the DNA enzyme in the reticular structure, and the construction of an adjustable electrochemiluminescence sensor for Pb2+ ions in the reticulate double chain of electrochemiluminescence materials. The nucleic acid reticular structure assembled by the Pb2+ ion mediated DNA enzyme cyclic shear was released and released at the same time. The discharge induced chemiluminescence material leads to the reduction of electrochemiluminescence signal to realize the quantitative analysis of Pb2+ ions. The shear efficiency is not only related to the concentration of Pb2+ ions, but also related to the reaction time, thereby regulating the linear range and detecting sensitivity by controlling the reaction time. The chemiluminescence strategy can also be applied to other sensitive and adjustable tests, such as proteins, nucleic acids, etc., and provides a new analytical strategy for environmental safety and clinical testing.5. based on iridium complex nanomaterials and in situ enzyme amplified electrochemiluminescence sensors for the study of the three phenyl pyridine iridium complex as a kind of high quantum conversion efficiency. The excellent electrochemiluminescence materials with high electron transfer efficiency and high electron transfer efficiency are expected to build higher detection sensitivity electrochemiluminescence (electrochemiluminescence) technology on this basis. However, their poor solubility in water, difficult to label and other defects restrict its wide application in the field of electrochemiluminescence sensing technology. This study uses three phenyl pyridine iridium complexes to doping two oxygen. Silicon nanomaterials have realized the high efficiency of electrochemiluminescent materials and greatly improved their water solubility. The performance of electrochemiluminescence sensors based on iridium complex nanomaterials and in situ enzyme amplified electrochemiluminescence sensors was investigated by using the markers of heart failure and the B natriuretic peptide at the end of N. The inductor was coated on the surface of the electrode with Nafion dispersed three phenyl pyridine iridium complex doped silica nanomaterials and further coupled with the immobilized anti N terminal B natriuretic peptide antibody. Based on this, the electrochemiluminescence sensor has a strong electrochemiluminescence signal. When the detection sample contains the N terminal B type natrium At the time of peptide, it can be combined with the surface of the electrode by specific immune recognition, and further combined with the two resistance of glucose oxidase labeling. The quantitative analysis and detection of the B type natriuretic peptide in the N terminal of the target by glucose oxidase catalyzing the quenching of glucose producing hydrogen peroxide to the electrochemiluminescence signal. The electrochemiluminescence analysis strategy can also be applied to high sensitive analytical applications of other targets, such as nucleic acids, cells and other substances.
【學(xué)位授予單位】:西南大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O657.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 林金明;安鏡如;;電致化學(xué)發(fā)光儀器的進(jìn)展[J];分析儀器;1991年03期
2 安鏡如;姚晴;;電致化學(xué)發(fā)光法測(cè)定痕量鎳(Ⅱ)及機(jī)理研究[J];分析化學(xué);1990年09期
3 陳曦,安鏡如;某些酰肼類化合物電致化學(xué)發(fā)光的比較[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);1991年01期
4 王倫;嚴(yán)鳳霞;王筱敏;;電致化學(xué)發(fā)光及其在分析化學(xué)中的應(yīng)用[J];化學(xué)通報(bào);1991年05期
5 游新奎;液相色譜的交流電致化學(xué)發(fā)光檢測(cè)系統(tǒng)的研制[J];色譜;1995年03期
6 黃風(fēng)華;陳國(guó)南;莊惠生;;10,10′-二甲基-3,3′二氨基-9,9′-雙吖啶電致化學(xué)發(fā)光行為及機(jī)理研究[J];分子科學(xué)學(xué)報(bào);2008年01期
7 安鏡如,林建國(guó);新試劑6-(2,4-二羥基苯基偶氮)-2,3-二氫-1,4酞嗪二酮的電致化學(xué)發(fā)光研究[J];分析化學(xué);1992年06期
8 安鏡如,林建國(guó);電致化學(xué)發(fā)光抑制效應(yīng)測(cè)定硫脲[J];高等學(xué);瘜W(xué)學(xué)報(bào);1992年05期
9 陳曦,王小如,黃本立;電致化學(xué)發(fā)光研究的新進(jìn)展[J];分析化學(xué);1998年06期
10 何品剛,劉祥萍,余慧,方禹之;電致化學(xué)發(fā)光法測(cè)定藥劑中鹽酸表阿霉素的含量[J];分析化學(xué);2000年09期
相關(guān)會(huì)議論文 前10條
1 陳國(guó)南;段建平;莊惠生;;生物活性物質(zhì)的電致化學(xué)發(fā)光分析[A];第五屆全國(guó)光生物學(xué)學(xué)術(shù)討論會(huì)論文摘要集[C];2000年
2 陳國(guó)南;段建平;;生物活性物質(zhì)的電致化學(xué)發(fā)光分析[A];全國(guó)植物光合作用、光生物學(xué)及其相關(guān)的分子生物學(xué)學(xué)術(shù)研討會(huì)論文摘要匯編[C];2001年
3 牛歡;袁若;柴雅琴;毛俐;曹婭玲;劉慧靜;;多重催化放大過(guò)硫酸根的電致化學(xué)發(fā)光用于超靈敏的免疫分析[A];中國(guó)化學(xué)會(huì)第十屆全國(guó)發(fā)光分析學(xué)術(shù)研討會(huì)論文集[C];2011年
4 韓恩;丁霖;鞠q,
本文編號(hào):2006917
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/2006917.html