材料構(gòu)件在氣動(dòng)噪聲環(huán)境下的聲載荷場(chǎng)分析方法研究
本文選題:氣動(dòng)噪聲 + 氣流背景噪聲抑制。 參考:《北京科技大學(xué)》2017年博士論文
【摘要】:飛行器在高速服役過(guò)程中,空氣與飛行器結(jié)構(gòu)產(chǎn)生劇烈的相互作用,使飛行器結(jié)構(gòu)表面的空氣壓力產(chǎn)生脈動(dòng),由此產(chǎn)生氣動(dòng)噪聲。氣動(dòng)噪聲會(huì)使飛行器結(jié)構(gòu)產(chǎn)生聲疲勞失效問(wèn)題,威脅飛行器的服役安全。因此,在飛行器的研發(fā)和設(shè)計(jì)過(guò)程中,需要對(duì)材料構(gòu)件的氣動(dòng)噪聲的載荷場(chǎng)進(jìn)行分析,為飛行器服役安全性能的評(píng)價(jià)和降噪設(shè)計(jì)提供數(shù)據(jù)支撐。通常,在地面模擬實(shí)驗(yàn)環(huán)境中開(kāi)展氣動(dòng)噪聲的研究,會(huì)遇到如下困難:氣流背景噪聲嚴(yán)重,導(dǎo)致材料構(gòu)件氣動(dòng)噪聲的信噪比低;環(huán)境中布置陣列的孔徑有限,使聲源定位的辨識(shí)能力不足;聲波在氣流傳播中發(fā)生路徑偏折,改變了聲傳播時(shí)延,造成聲場(chǎng)重構(gòu)準(zhǔn)確度的下降;在惡劣的高速氣流近場(chǎng)環(huán)境下,難以實(shí)現(xiàn)材料構(gòu)件實(shí)時(shí)聲載荷信號(hào)的近場(chǎng)測(cè)量,也就無(wú)法對(duì)材料構(gòu)件的服役狀態(tài)給出準(zhǔn)確評(píng)價(jià)。本文以現(xiàn)有的聲場(chǎng)分析和信號(hào)處理理論作為基礎(chǔ),以氣動(dòng)噪聲環(huán)境下的材料構(gòu)件所承受的氣動(dòng)噪聲載荷為研究對(duì)象,開(kāi)展材料構(gòu)件在氣動(dòng)噪聲環(huán)境下的聲載荷場(chǎng)分析方法研究,可以為飛行器材料構(gòu)件的服役安全評(píng)估和降噪設(shè)計(jì)提供更為可靠的評(píng)價(jià)數(shù)據(jù),對(duì)保證飛行器的服役安全具有十分重要的意義。論文具體內(nèi)容如下:(1)提出基于集合經(jīng)驗(yàn)?zāi)B(tài)分解的氣流背景噪聲抑制方法。在氣流環(huán)境中,材料構(gòu)件的氣動(dòng)噪聲被高強(qiáng)氣流背景噪聲淹沒(méi),使材料構(gòu)件的氣動(dòng)噪聲信噪比被降低,難以在聲源定位云圖中對(duì)材料構(gòu)件的氣動(dòng)噪聲源進(jìn)行正確辨識(shí)。針對(duì)氣動(dòng)噪聲環(huán)境中高強(qiáng)氣流背景噪聲抑制問(wèn)題,提出基于集合經(jīng)驗(yàn)?zāi)B(tài)分解(EEMD)的氣流背景噪聲抑制方法。首先在氣流空吹工況下采集純氣流背景噪聲信號(hào);之后將試件安裝在氣流中,采集到試件的氣動(dòng)噪聲和氣流背景噪聲的混合信號(hào),并對(duì)混合信號(hào)進(jìn)行EEMD分解,得到各IMF分量;計(jì)算各IMF分量與純氣流背景噪聲信號(hào)的相關(guān)系數(shù),將相關(guān)系數(shù)小于閾值的IMF分量進(jìn)行還原,實(shí)現(xiàn)氣流背景噪聲抑制,提高強(qiáng)氣流背景噪聲干擾下測(cè)試件氣動(dòng)聲源定位的辨識(shí)度。在聲學(xué)風(fēng)洞中開(kāi)展了對(duì)揚(yáng)聲器聲源和機(jī)翼模型尾緣氣動(dòng)噪聲源的氣流背景噪聲抑制實(shí)驗(yàn),利用新方法使淹沒(méi)在氣流背景噪聲中的目標(biāo)聲源在聲源定位云圖中凸顯出來(lái),驗(yàn)證了方法的有效性。(2)提出基于互譜矩陣擬合的氣動(dòng)噪聲源定位新方法。在氣動(dòng)噪聲模擬實(shí)驗(yàn)裝置中,有限的傳聲器陣列布陣空間限制了氣動(dòng)聲源定位的辨識(shí)能力,運(yùn)動(dòng)的氣流降低了聲源定位的準(zhǔn)確度。針對(duì)飛行器構(gòu)件的氣動(dòng)噪聲源高精度定位問(wèn)題,提出基于互譜矩陣擬合的氣動(dòng)噪聲源定位方法(Amiet-IMACS)。首先利用Amiet方法對(duì)氣流環(huán)境下的陣列流形矩陣進(jìn)行修正;之后在原始互譜矩陣擬合方法的基礎(chǔ)上,提出一種新的稀疏化約束條件,能夠自適應(yīng)改變稀疏化約束參數(shù),改善聲源辨識(shí)度,提高計(jì)算效率。在聲學(xué)風(fēng)洞環(huán)境中開(kāi)展相關(guān)雙聲源和機(jī)翼模型尾緣脫渦噪聲源的定位實(shí)驗(yàn),利用新方法提高了對(duì)聲源的辨識(shí)能力和定位準(zhǔn)確度,驗(yàn)證了新方法對(duì)氣動(dòng)噪聲源定位的有效性。(3)提出基于Amiet解析被動(dòng)時(shí)間反轉(zhuǎn)鏡的氣動(dòng)聲載荷信號(hào)還原方法。在高速氣流環(huán)境下難以實(shí)現(xiàn)材料構(gòu)件實(shí)時(shí)聲載荷信號(hào)的近場(chǎng)測(cè)量,也就無(wú)法對(duì)材料構(gòu)件的服役狀態(tài)給出準(zhǔn)確評(píng)價(jià)。針對(duì)氣動(dòng)噪聲環(huán)境下材料構(gòu)件的近場(chǎng)氣動(dòng)聲載荷信號(hào)的還原問(wèn)題,提出基于Amiet解析被動(dòng)時(shí)間反轉(zhuǎn)鏡(Amiet-AP-TR)的氣動(dòng)聲載荷信號(hào)還原方法。首先,提出新的時(shí)間反轉(zhuǎn)聲傳播模型,即在對(duì)傳聲器陣列信號(hào)進(jìn)行時(shí)間反轉(zhuǎn)的基礎(chǔ)上,將氣流的方向也進(jìn)行虛擬反向;其次,利用Amiet氣流修正方法,計(jì)算了氣流環(huán)境下時(shí)間反轉(zhuǎn)聲波的路徑和時(shí)延,修正了時(shí)間反轉(zhuǎn)鏡的解析表達(dá)式;最后,將時(shí)間反轉(zhuǎn)的陣列信號(hào)代入解析表達(dá)式中,可獲得聲載荷場(chǎng)的實(shí)時(shí)聲壓信號(hào),實(shí)現(xiàn)高時(shí)間分辨的氣動(dòng)噪聲載荷場(chǎng)分析。在聲學(xué)風(fēng)洞環(huán)境中,利用新方法提高了揚(yáng)聲器還原信號(hào)與真值信號(hào)的相關(guān)系數(shù),并實(shí)現(xiàn)對(duì)機(jī)翼模型氣動(dòng)噪聲載荷場(chǎng)的高時(shí)間分辨分析,驗(yàn)證了新方法對(duì)氣動(dòng)噪聲載荷信號(hào)還原的有效性。(4)開(kāi)展超音速氣流環(huán)境下典型構(gòu)件氣動(dòng)噪聲載荷場(chǎng)分析研究。在流速為4Ma,環(huán)境壓力為5kPa的超音速氣流環(huán)境下,搭建基于傳聲器陣列的氣動(dòng)噪聲載荷分析系統(tǒng),實(shí)現(xiàn)對(duì)超音速氣流環(huán)境下典型構(gòu)件的氣動(dòng)噪聲載荷陣列信號(hào)的高速同步采集和聲場(chǎng)重構(gòu)分析,利用基于EEMD的氣流背景噪聲抑制方法、Amiet-IMACS高分辨率聲源定位方法和Amiet-AP-TR聲載荷信號(hào)還原方法,對(duì)平板試件和球柱試件特征頻段的氣動(dòng)噪聲載荷進(jìn)行全面的精細(xì)化分析,可以獲得典型構(gòu)件氣動(dòng)噪聲載荷的特征頻段、強(qiáng)度、位置和實(shí)時(shí)分布等特征規(guī)律。
[Abstract]:During the high-speed service of the aircraft, the air and the structure of the aircraft produce violent interaction, which causes the air pressure of the surface of the aircraft structure to produce pulsation, resulting in aerodynamic noise. The aerodynamic noise will cause the problem of acoustic fatigue failure of the aircraft structure and threaten the service safety of the aircraft. Therefore, the process of research and design and design of the aircraft is in the process of designing and designing the aircraft. It is necessary to analyze the aerodynamic noise load field of the material components and provide data support for the safety performance evaluation and noise reduction design of the aircraft. Usually, the research of aerodynamic noise in the ground simulation experiment environment will meet the following difficulties: the air background noise is serious, which leads to the low signal to noise ratio of the aerodynamic noise of the material components; The aperture of the array is limited, which makes the identification ability of the sound source localization is insufficient; the sound wave has a path deflected in the air flow, and the sound propagation delay is changed, and the accuracy of the sound field reconstruction is reduced. It is difficult to realize the near field measurement of the real time sound load signal of the material components under the bad high-speed airflow near field environment, and the material can not be used to the material. On the basis of the existing sound field analysis and signal processing theory, this paper takes the aerodynamic noise load under the pneumatic noise environment as the research object, and studies the analysis method of the acoustic load field of the material components under the aerodynamic noise environment, which can be used as the material components of the aircraft. The service safety assessment and noise reduction design provide more reliable evaluation data, which is of great significance to ensure the safety of the aircraft in service. The contents of this paper are as follows: (1) a method of airflow background noise suppression based on collective empirical mode decomposition is proposed. In the air flow environment, the aerodynamic noise of the material components is caused by the background noise of high strength air flow. It is difficult to correctly identify the aerodynamic noise source of the material components in the sound source positioning cloud, and it is difficult to identify the aerodynamic noise source of the material components in the sound source positioning cloud. In view of the suppression of the background noise of the high strength air flow in the aerodynamic noise environment, the air background noise suppression method based on the collective empirical mode decomposition (EEMD) is proposed. The pure air background noise signal is collected under the working condition; then the specimen is installed in the air flow to collect the mixed signal of the aerodynamic noise and the air background noise of the specimen, and the mixed signal is decomposed by EEMD, and each IMF component is obtained; the correlation coefficient of the IMF component and the pure air background noise signal is calculated, and the correlation coefficient is less than the threshold value of the IMF component. In the acoustic wind tunnel, the air background noise suppression experiment on the sound source of the loudspeaker and the tail edge of the wing model is carried out in the acoustic wind tunnel, and the new method is used to make the target sound submerged in the background noise of the airflow. The source is highlighted in the sound source mapping, and the effectiveness of the method is verified. (2) a new method of locating the aerodynamic noise source based on the cross spectrum matrix fitting is proposed. In the pneumatic noise simulation experiment device, the finite microphone array space restricts the identification energy of the pneumatic sound source positioning, and the moving air flow reduces the accuracy of the sound source location. In view of the high precision positioning of aerodynamic noise sources of aircraft components, an aerodynamic noise source localization method based on cross spectral matrix fitting (Amiet-IMACS) is proposed. First, Amiet method is used to modify the array manifold matrix in the airflow environment, and then a new sparsity constraint bar is proposed on the basis of the original cross spectral matrix fitting method. It can adaptively change the sparse constraint parameters, improve the identification of sound source and improve the calculation efficiency. In the acoustic wind tunnel, the localization experiment of the related dual source and the tail edge vortex noise source of the wing model is carried out, and the identification and positioning accuracy of the sound source are improved by the new method, and the new method is verified for the positioning of the aerodynamic noise source. (3) (3) a method for the reduction of the acoustic load signal based on the passive time reversal mirror is proposed. It is difficult to realize the near field measurement of the real time acoustic load signal of the material components under the high speed air flow environment, and it is impossible to give an accurate evaluation of the service state of the material components. The reduction of load signal is proposed, and a new method is proposed based on Amiet to analyze passive time reversal mirror (Amiet-AP-TR). First, a new time reversal sound propagation model is proposed, that is, on the basis of time reversal of the microphone array signal, the direction of the air flow is also virtual reverse; secondly, the Amiet air flow is used to repair it. In the positive method, the path and time delay of the time reversal sound wave in the airflow environment are calculated and the analytic expression of the time reversal mirror is corrected. Finally, the time reversal array signal is replaced in the analytic expression, and the sound pressure signal of the acoustic load field can be obtained to realize the high time resolved aerodynamic noise load field analysis. In the acoustic wind tunnel environment, the benefit is obtained. A new method is used to improve the correlation coefficient between the loudspeaker reduction signal and the true value signal, and the high time resolution analysis of the aerodynamic noise load field of the wing model is realized. The effectiveness of the new method to the reduction of the aerodynamic noise load signal is verified. (4) the analysis of the aerodynamic noise load field of the typical component under supersonic airflow environment is studied. The velocity is 4. Ma, under the environment pressure of 5kPa supersonic airflow, an aerodynamic noise load analysis system based on microphone array is set up to achieve high speed synchronous acquisition and sound field reconstruction analysis of the aerodynamic noise load array signals of typical components under supersonic airflow, and Amiet-IMACS high score is used to suppress the air background noise based on EEMD. The acoustic source localization method and the Amiet-AP-TR acoustic load signal reduction method are used to analyze the aerodynamic noise load of the characteristic frequency section of the plate specimen and the ball column specimen, and the characteristics of the characteristic frequency, intensity, position and real-time distribution of the aerodynamic noise load of typical components can be obtained.
【學(xué)位授予單位】:北京科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:V250.2;V214
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 褚志剛;段云煬;沈林邦;楊洋;;函數(shù)波束形成聲源識(shí)別性能分析及應(yīng)用[J];機(jī)械工程學(xué)報(bào);2017年04期
2 潘宏俠;張翔;;基于GAMP和EEMD的滾動(dòng)軸承故障診斷研究[J];振動(dòng)與沖擊;2016年20期
3 李征初;李勇;陳正武;黃奔;王勛年;;CLEAN-SC算法在風(fēng)洞聲源定位與識(shí)別中的應(yīng)用研究[J];實(shí)驗(yàn)流體力學(xué);2016年03期
4 唐貴基;王曉龍;;基于EEMD降噪和1.5維能量譜的滾動(dòng)軸承故障診斷研究[J];振動(dòng)與沖擊;2014年01期
5 陳濤;侯宏;陳志菲;趙江楠;姜成坤;;ARJ21客機(jī)降落階段起落架噪聲試驗(yàn)研究[J];聲學(xué)學(xué)報(bào);2013年05期
6 付強(qiáng);黎敏;樊悅;魏龍;;聲場(chǎng)重構(gòu)中消除鬼影和提高重構(gòu)精度的方法[J];噪聲與振動(dòng)控制;2013年04期
7 孫爽;喬渭陽(yáng);黃曉聃;;數(shù)控傳聲器陣列反卷積法對(duì)飛機(jī)噪音的應(yīng)用與實(shí)驗(yàn)研究[J];應(yīng)用聲學(xué);2012年04期
8 陳正武;王勛年;李征初;劉志濤;崔紅芳;;基于聲學(xué)風(fēng)洞的麥克風(fēng)陣列測(cè)試技術(shù)應(yīng)用研究[J];實(shí)驗(yàn)流體力學(xué);2012年03期
9 劉哲;陳日林;滕鵬曉;楊亦春;;基于平面?zhèn)髀暺麝嚵械穆曉炊ㄎ幌到y(tǒng)[J];聲學(xué)技術(shù);2011年02期
10 王樂(lè)善;巨亞堂;吳振強(qiáng);張偉;孔凡金;;輻射加熱方法在結(jié)構(gòu)熱試驗(yàn)中的作用與地位[J];強(qiáng)度與環(huán)境;2010年05期
,本文編號(hào):1986729
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1986729.html