再生水回補河湖條件下污染物的遷移轉(zhuǎn)化機制研究
本文選題:再生水 + 硝態(tài)氮; 參考:《中國農(nóng)業(yè)大學》2017年博士論文
【摘要】:再生水已成為北京市河湖生態(tài)用水的重要水源,但再生水污染物滲漏可能對地下水環(huán)境造成潛在污染風險,因此探討再生水回補河湖后對地表水和地下水環(huán)境影響的研究十分重要。本文通過室內(nèi)土柱模擬滲濾系統(tǒng),研究了4種不同水力條件下(定水頭淹水、交替淹水落干、定流速和側(cè)向補水)滲濾系統(tǒng)對再生水中硝態(tài)氮(NO_3-N)、氨態(tài)氮(NH4-N)、化學需氧量(COD)和總氮(TN)的去除效果及其影響因素;同時以北京市清洋河為研究對象開展野外觀測試驗,探討再生水補給后,地表水和地下水水質(zhì)的時空變化特征;并構(gòu)建了一維和二維水氮遷移模型,分別對室內(nèi)土柱一維水氮遷移轉(zhuǎn)化過程和野外河道再生水補給滲濾系統(tǒng)的二維水氮遷移轉(zhuǎn)化過程進行了模擬研究。主要研究和結(jié)果如下:(1)當水力負荷在0.25-2.65 cm d-1范圍內(nèi)時,系統(tǒng)對N03-N的去除率隨著水力負荷的增大而減小,側(cè)向補水系統(tǒng)對N03-N的去除效果最佳,去除率高達96%。N03-N的去除主要取決于系統(tǒng)內(nèi)部微生物的分布情況,土層中反硝化細菌數(shù)量越大,相應(yīng)土層對NO_3-N的去除率越高。水溫在15~32 ℃范圍內(nèi)變化時,定水頭淹水和交替淹水落干系統(tǒng)對N03-N的去除率與溫度分別呈指數(shù)和冪函數(shù)關(guān)系。當再生水中NH4-N濃度較低時,較長的水力停留時間和充分的有氧環(huán)境可促進NH4-N的去除。(2)交替淹水落干滲濾系統(tǒng)對再生水中COD的去除率(51%)略高于定水頭淹水系統(tǒng)對COD的去除率(41%)。COD的去除主要發(fā)生在滲濾系統(tǒng)上部0~40 cm 土層范圍內(nèi)。交替淹水落干系統(tǒng)對TN的去除率(84%)明顯高于定水頭淹水系統(tǒng)(51%),兩滲濾系統(tǒng)對TN的去除效率與溫度呈正相關(guān)關(guān)系,溫度高于30℃時,交替淹水落干系統(tǒng)對TN去除率高達90%以上。(3)NO_3-N和TN是清洋河的主要污染因子,N03-N和TN濃度沿河道水流方向逐漸下降,而COD和BOD5濃度沿河道水流方向逐漸增大。底泥部位對NO_3-N的去除率為85%,是NO_3-N去除的主要部位,N03-N的變化受滲流區(qū)水溫的影響明顯。滲流帶的吸附和硝化作用是NH4-N去除的主要作用機制,可去除92%的NH4-N,NH4-N的變化主要受飽和帶溫度和有機質(zhì)含量的影響。距河岸距離越大,遷移時間越長,河岸滲濾過程對COD的去除率越高,河岸滲濾系統(tǒng)對COD的去除率達54%。(4)利用是室內(nèi)和野外試驗數(shù)據(jù)對構(gòu)建的一維和二維水氮運移模型進行率定驗證,表明率定驗證后的模型能夠較好地模擬不同水力條件下的水氮遷移過程。結(jié)果發(fā)現(xiàn),溫度與反硝化速率常數(shù)之間呈指數(shù)相關(guān),可通過該相關(guān)關(guān)系對不同溫度下反硝化速率常數(shù)進行修正。模型模擬了不同溫度和不同河水NO_3-N濃度情景下淺層地下水中N03-N的遷移過程,結(jié)果發(fā)現(xiàn),當溫度在5-25℃范圍內(nèi)時,每提高10℃時,河岸滲濾系統(tǒng)對N03-N的去除率可提高0.5-1.6倍。建議再生水補給期內(nèi)(每年的3~11月),控制補給再生水中NO_3-N濃度不高于30mgL-1;為降低對地下水污染的風險,適宜的補水時段為溫度較高的夏季(高于20 ℃)。
[Abstract]:Reclaimed water has become an important source of water for ecological water in Beijing River and lake, but the leakage of reclaimed water may cause potential pollution risk to the groundwater environment. Therefore, it is very important to study the influence of reclaimed water on the surface water and groundwater environment after reclaiming the river lake. In this paper, 4 different kinds of water power are studied through the indoor soil column simulated percolation system. The effect of the removal of nitrate nitrogen (NO_3-N), ammonia nitrogen (NH4-N), chemical oxygen demand (COD) and total nitrogen (TN) in reclaimed water and its influence factors under the conditions of water head flooding, alternate flooding and drying, constant flow rate and lateral water supplement. The field observation test was carried out in the Yanghe River, Beijing city as the research object, and the surface of the reclaimed water was discussed. The spatial and temporal characteristics of water and groundwater quality are characterized, and one and two dimensional water and nitrogen migration models are constructed. The one-dimensional water and nitrogen migration and transformation process of the indoor soil column and the two-dimensional water and nitrogen transfer process of the recharge filter system in the field are simulated respectively. The main research and results are as follows: (1) when the hydraulic load is in 0.25-2.65 cm In the range of D-1, the removal rate of N03-N decreases with the increase of hydraulic load, and the removal efficiency of N03-N is the best. The removal rate up to 96%.N03-N depends mainly on the distribution of microbes in the system. The greater the number of denitrifying bacteria in the soil layer, the higher the removal rate of the corresponding soil layer to NO_3-N. The water temperature is 1. When the range of 5~32 C is changed, the removal rate of N03-N and the temperature are exponential and power function respectively. When the NH4-N concentration in the regenerated water is low, the longer hydraulic retention time and the sufficient aerobic environment can promote the removal of NH4-N. (2) the alternately flooded and dry infiltration system for the regenerated water COD The removal rate (51%) is slightly higher than that of the fixed water head submergence system (41%). The removal of.COD is mainly in the upper 0~40 cm layer of the percolation system. The removal rate of TN in the alternate flooding system (84%) is obviously higher than that of the fixed water head (51%). The removal efficiency of TN is positively correlated with the temperature of TN, and the temperature is higher than that of the system. At 30, the removal rate of TN is more than 90%. (3) NO_3-N and TN are the main pollution factors of the Qing the Yanghe River. The concentration of N03-N and TN gradually decreases along the river flow direction, while the COD and BOD5 concentration increases along the river flow direction. The removal rate of NO_3-N in the sediment is 85%, the main part of NO_3-N removal, the change of N03-N The influence of water temperature in the percolation zone is obvious. The adsorption and nitrification of the percolation zone are the main mechanism of NH4-N removal, which can remove 92% NH4-N. The change of NH4-N is mainly influenced by the temperature of the saturated zone and the content of organic matter. The greater the distance from the riverbank, the longer the migration time is, the higher the removal rate of the riparian filtration process to the COD, and the river bank filtration system to COD The removal rate of 54%. (4) is used to verify the rate of one and two two-dimensional water and nitrogen migration models constructed by indoor and field test data. The results show that the model can well simulate the process of water and nitrogen migration under different hydraulic conditions. The results show that the correlation between temperature and denitrification rate constants is exponential, and the correlation can be obtained through the correlation. The denitrification rate constant under different temperatures was corrected. The model simulated the migration process of N03-N in shallow groundwater under different temperatures and different water NO_3-N concentrations. The results showed that when the temperature was in the range of 5-25 degrees C, the removal rate of the riparian percolation system to the N03-N could be increased by 0.5-1.6 times per increase of 10 degrees C. The reclaimed water was recommended. During the period of the period (3~11 months per year), the concentration of NO_3-N in recharge recharge water is not higher than 30mgL-1. In order to reduce the risk of groundwater pollution, the appropriate time for water replenishment is a higher temperature in summer (higher than 20).
【學位授予單位】:中國農(nóng)業(yè)大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:X52
【參考文獻】
相關(guān)期刊論文 前10條
1 Lei Yang;Jiangtao He;Yumei Liu;Jian Wang;Lie Jiang;Guangcai Wang;;Characteristics of change in water quality along reclaimed water intake area of the Chaobai River in Beijing,China[J];Journal of Environmental Sciences;2016年12期
2 張瑞;劉操;孫德智;齊飛;;北京地區(qū)再生水補給型河湖水質(zhì)改善工程案例分析與問題診斷[J];環(huán)境科學研究;2016年12期
3 何寶南;何江濤;王健;李杰;;順義潮白河再生水受水區(qū)反硝化作用初探[J];農(nóng)業(yè)環(huán)境科學學報;2016年08期
4 郭紅兵;陳榮;王曉昌;;不同補水方式下翠湖沉積物氮磷釋放特性研究[J];環(huán)境科學與技術(shù);2016年02期
5 李海波;馬吉福;王鑫;李英華;王洪;王士滿;段玉龍;;水力負荷對污水地下滲濾系統(tǒng)處理效果的影響[J];環(huán)境工程學報;2016年02期
6 冀峰;王國祥;韓睿明;李時銀;李曉君;;太湖流域農(nóng)村黑臭河流沉積物中磷形態(tài)的垂向分布特征[J];環(huán)境科學學報;2016年01期
7 王超;顧斌杰;龔秀英;呂紅霞;閆子博;王思思;;永定河城市段水體富營養(yǎng)化現(xiàn)狀研究[J];北京水務(wù);2014年06期
8 崔峻嶺;黃修東;張聿洵;劉本寶;;基于HYDRUS-2D的滲濾池回灌地下水數(shù)值模擬研究[J];地下水;2014年05期
9 王健;何江濤;劉玉梅;姜烈;;潮白河再生水受水區(qū)水質(zhì)變化特征多元統(tǒng)計分析[J];環(huán)境科學與技術(shù);2014年06期
10 李小牛;周長松;周孝德;馮民權(quán);;污灌區(qū)淺層地下水污染風險評價研究[J];水利學報;2014年03期
相關(guān)博士學位論文 前2條
1 劉克;北京市典型河湖再生水補水生態(tài)環(huán)境效應(yīng)研究[D];首都師范大學;2012年
2 韓璐;河流沉積物磷形態(tài)分布特征及其釋放模擬研究[D];南開大學;2010年
相關(guān)碩士學位論文 前3條
1 何騰;再生水補充景觀水體的水質(zhì)變化研究[D];西安建筑科技大學;2016年
2 丁素玲;非均質(zhì)包氣帶中“三氮”遷移轉(zhuǎn)化數(shù)值模擬[D];中國地質(zhì)大學(北京);2012年
3 張光連;北京市再生水綜合利用規(guī)劃研究[D];中國農(nóng)業(yè)大學;2005年
,本文編號:1986991
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1986991.html