天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

高速公路砂泥巖順層邊坡組合抗滑體系協(xié)調(diào)效應(yīng)研究

發(fā)布時(shí)間:2018-05-25 23:00

  本文選題:正弦波 + 車輛荷載 ; 參考:《北京交通大學(xué)》2017年博士論文


【摘要】:長(zhǎng)期以來(lái),路基邊坡的綜合防護(hù)一直是高速公路修筑中的一個(gè)常見(jiàn)課題。伴隨我國(guó)鐵路、公路、庫(kù)區(qū)或場(chǎng)地等工程的建設(shè)和發(fā)展,涉及了大量的路基邊坡工程防護(hù)技術(shù)問(wèn)題,其中以大型順層巖石路塹高邊坡防護(hù)問(wèn)題為主要難點(diǎn)。當(dāng)前對(duì)于斜交型邊坡極限角度的范圍尚未完善;而錨索、框架梁及抗滑樁作為治理順層邊坡的主要加固措施,雖然已廣泛應(yīng)用于各個(gè)領(lǐng)域,但是對(duì)于三者之間相互的協(xié)調(diào)作用尚缺乏系統(tǒng)研究。因此,本文以重慶涪(陵)豐(都)石(柱)高速公路建設(shè)項(xiàng)目的典型路段為例,首先采用三維數(shù)值模擬手段建立斜交邊坡模型(斜交邊坡模型),利用SRM法分析驗(yàn)證了斜交型邊坡沿順層滑移的極限角度;并基于此結(jié)果判定K27邊坡的失穩(wěn)機(jī)理,構(gòu)建了錨框樁組合抗滑體系加固K27順層邊坡三種條件下的有限元數(shù)值模型(K27順層邊坡模型),通過(guò)分析數(shù)值模擬結(jié)果與現(xiàn)場(chǎng)監(jiān)測(cè)數(shù)據(jù)對(duì)錨框樁組合抗滑體系治理K27邊坡進(jìn)行了系統(tǒng)的分析和評(píng)價(jià)?偨Y(jié)組合抗滑體系協(xié)調(diào)效應(yīng)規(guī)律,提出動(dòng)荷載作用下,錨樁內(nèi)力的合理協(xié)調(diào)區(qū)間概念,提供評(píng)價(jià)動(dòng)荷載邊坡穩(wěn)定性的另一指標(biāo)以及動(dòng)荷載邊坡控制的新方法。主要研究?jī)?nèi)容及創(chuàng)新性成果如下:(1)基于斜交邊坡模型模擬巖層層面與邊坡坡面夾角對(duì)邊坡穩(wěn)定性影響,得.出斜交邊坡沿順層滑移的極限角度為30°。通過(guò)三維數(shù)值模擬計(jì)算,得出當(dāng)巖層層面與邊坡坡面夾角為30°時(shí),水平位移和安全系數(shù)出現(xiàn)了明顯的拐點(diǎn),表明巖層層面與邊坡坡面夾角小于30°時(shí),巖層層面與邊坡坡面夾角對(duì)穩(wěn)定性影響較大,此時(shí)邊坡的破壞方式主要以順層滑移為主。即斜交邊坡沿順層滑移的極限角為30。。(2)針對(duì)大型順層中緩傾順層巖質(zhì)高邊坡,結(jié)合"邊開(kāi)挖邊支護(hù)"的施工方式,本文在典型的滑移-拉裂式順層破壞的基礎(chǔ)上,提出多級(jí)拉裂式順層滑移破壞模式。該種破壞模式在描述大型順層中緩傾邊坡的變形形態(tài)上更加貼切。(3)建立了順層巖質(zhì)邊坡的數(shù)學(xué)力學(xué)模型,并基于此力學(xué)模型,構(gòu)建了錨框樁組合抗滑體系加固K27邊坡的三種條件下的有限元數(shù)值模型,分析了組合抗滑體系的協(xié)調(diào)效應(yīng)規(guī)律,即該體系下,預(yù)應(yīng)力錨索的下滑力分擔(dān)值越大,抗滑樁的下滑力分擔(dān)值就越小;相反的,預(yù)應(yīng)力錨索的下滑力分擔(dān)值越小,抗滑樁的下滑力分擔(dān)值就協(xié)調(diào)大一些。通過(guò)相互的協(xié)調(diào)作用,在整個(gè)組合體系上表現(xiàn)出更高效的抵抗邊坡下滑力的特征。(4)基于對(duì)K27滑坡形成機(jī)制的分析,在傳統(tǒng)的滑移-拉裂順層破壞的基礎(chǔ)上,提出多級(jí)拉裂式順層滑移破壞模式。這種多級(jí)別拉裂順層滑移破壞模式在描述大型順層中緩傾邊坡的變形機(jī)制上更加貼切。并對(duì)K27滑坡推力進(jìn)行了驗(yàn)算,自然工況下邊坡的安全系數(shù)為1.07,暴雨工況下邊坡的安全系數(shù)為0.94,屬于不穩(wěn)定邊坡,需要進(jìn)行抗滑治理。(5)基于對(duì)K27巖石順層路塹高邊坡的調(diào)研,綜合滑坡的形成機(jī)制分析,單一的治理方法已經(jīng)不能完全滿足治理要求。最終建立錨框樁組合抗滑體系對(duì)K27邊坡進(jìn)行整治。經(jīng)3D數(shù)值模擬SRM法計(jì)算,在錨框樁組合抗滑體系作用下,K27緩傾順層路塹邊坡自然工況邊坡的安全系數(shù)達(dá)到了 1.74,屬穩(wěn)定邊坡。(6)考慮坡頂正弦車載作用下,順層邊坡錨樁抗滑體系的協(xié)調(diào)機(jī)制。K27邊坡坡頂改建道路的存在,是邊坡抗滑設(shè)計(jì)的又一難題。通過(guò)模擬了坡頂正弦波車輛荷載作用下,邊坡的自由振動(dòng)分析和時(shí)程分析得出結(jié)論:坡頂動(dòng)荷載作用下,錨樁組合抗滑結(jié)構(gòu)各自對(duì)下滑力的承擔(dān)可以相互協(xié)調(diào);錨樁組合抗滑體系對(duì)動(dòng)荷載的響應(yīng)敏感度并不一致,這主要與荷載的作用位置和大小有關(guān);提出了動(dòng)荷載作用下,錨樁組合結(jié)構(gòu)的合理協(xié)調(diào)區(qū)間概念。經(jīng)計(jì)算,錨索的合理協(xié)調(diào)區(qū)間為[95.62,173.69];樁的合理協(xié)調(diào)區(qū)間為[197.46,286.05]。結(jié)合邊坡現(xiàn)場(chǎng)的監(jiān)測(cè)數(shù)據(jù),錨索內(nèi)力115.92kN以及抗滑樁內(nèi)力225.64kN均在各自的合理協(xié)調(diào)區(qū)間范圍內(nèi),邊坡在正弦車輛荷載作用下,處于穩(wěn)定狀態(tài)。以此評(píng)價(jià)動(dòng)荷載邊坡的穩(wěn)定性以及邊坡動(dòng)荷載控制的新方法。(7)基于錨框樁組合抗滑體系加固K27邊坡暴雨入滲工況的數(shù)值模擬,得出邊坡在暴雨滲流條件下最終的安全系數(shù)為1.49,治理效果良好,滿足規(guī)范要求。(8)基于現(xiàn)場(chǎng)試驗(yàn)監(jiān)測(cè)數(shù)據(jù)處理,錨索作用在邊坡滑動(dòng)方向上每延米的力為115.92kN/m,抗滑樁作用在邊坡滑動(dòng)方向上每延米的力為225.64kN/m,可知下滑力由錨索和抗滑樁共同作用承擔(dān),錨索框架梁體系承擔(dān)下滑力的33.94%,抗滑樁體系承擔(dān)下滑力的66.06%。均在設(shè)計(jì)值范圍內(nèi),屬于穩(wěn)定邊坡,治理效果良好。(9)基于正交試驗(yàn)優(yōu)化設(shè)計(jì),從治理措施的方法上分析,抗滑樁的抗滑能力大于錨索框架梁;從錨索優(yōu)化設(shè)計(jì)得出,錨索的預(yù)應(yīng)力以及錨固段長(zhǎng)度對(duì)抗滑起主要作用;從抗滑樁優(yōu)化設(shè)計(jì)得出,抗滑樁的樁長(zhǎng)對(duì)抗滑起主要作用。以使K27邊坡安全系數(shù)最大為標(biāo)準(zhǔn),確定建議的優(yōu)化方案。并得出建議的優(yōu)化方案安全系數(shù)為1.56,不僅節(jié)約了資源的使用也滿足了邊坡安全系數(shù)規(guī)范要求,進(jìn)而提高了資源的利用率。
[Abstract]:For a long time, the comprehensive protection of the roadbed slope has been a common problem in the construction of the highway. With the construction and development of railway, highway, reservoir area or site in China, a large number of roadbed slope engineering protection technology problems are involved, among which, the protection of high slope high slope is the main difficulty. The limit angle of oblique side slope has not been perfected, while the anchor cable, frame beam and anti slide pile are the main reinforcement measures for controlling the bedding slope, although it has been widely used in various fields, but there is no systematic research on the mutual coordination between the three. Therefore, this paper is based on the construction of the Chongqing Fu (Mausoleum) stone (capital) stone (capital) highway. The typical section of the section is taken as an example. Firstly, the oblique slope model (oblique slope model) is established by the three-dimensional numerical simulation method. The SRM method is used to verify the ultimate angle of the slanting slope along the CIS slip. Based on this result, the instability mechanism of the K27 slope is determined, and three conditions for the reinforcement of the K27 CIS slope with the anchor frame pile combination anti sliding system are constructed. Under the finite element numerical model (K27 bedding slope model), through the analysis of the numerical simulation results and the field monitoring data, the K27 slope is systematically analyzed and evaluated. The coordination effect law of the combined anti sliding system is summarized, and the rational coordination interval concept of the internal force of the anchor pile under the action of dynamic load is put forward, and the evaluation is provided. Another index of the stability of the dynamic load slope and the new method of controlling the dynamic load slope. The main research content and the innovative results are as follows: (1) the influence of the angle between the rock layer and the slope of the slope on the stability of the slope is simulated on the basis of the slope intersection slope model, and the ultimate angle of the slip slope along the CIS layer is 30 degrees. The calculation shows that when the angle between the rock layer and the slope is 30 degrees, the horizontal displacement and the safety factor have obvious inflection point. It shows that the angle between the rock layer and the slope slope is less than 30 degrees, the angle between the rock layer and the slope slope has great influence on the stability, and the slope failure mode is mainly based on the CIS layer slip. The limit angle of layer slip is 30.. (2) in view of the slow dip and bedding high rock slope in the large CIS layer, combined with the construction method of "side excavation and side support", on the basis of typical slip and crack type failure, the multistage sliding failure mode is put forward. This type of failure mode is used to describe the deformation form of the gently inclined slope in the large CIS layer. (3) the mathematical mechanics model of the bedding rock slope is established, and based on this mechanical model, the finite element numerical model is constructed under three conditions of the anchor frame pile combination anti sliding system to reinforce the K27 slope, and the coordination effect law of the combined anti sliding system is analyzed. The lower the sharing value of the slide force of the pile is smaller; on the contrary, the smaller the sharing value of the slide force of the prestressed anchor cable is, the greater the sharing value of the slide force of the anti slide pile is coordinated. Through the coordination of each other, the characteristic of resisting the slope sliding force is more efficient in the whole system. (4) based on the analysis of the formation mechanism of the landslide, the traditional slippage is carried out on the basis of the analysis of the formation mechanism of the landslide. On the basis of the failure of the shift and pull crack, the multilevel split type slip failure mode is proposed. This multi level sliding failure mode is more suitable for describing the deformation mechanism of the gently inclined slope in the large CIS layer. The K27 landslide thrust is checked. The safety factor of the slope is 1.07 under the natural condition, and the slope under the heavy rain condition. The safety factor is 0.94, which belongs to the unstable slope and needs anti sliding treatment. (5) based on the investigation of the high slope of the K27 rock CIS cutting and the analysis of the formation mechanism of the landslide, the single treatment method can not fully meet the requirements of the treatment. Finally, the anti sliding system of the anchor frame pile combination is established to the K27 slope through the 3D numerical simulation method. Calculation, under the action of anchor frame pile combination anti sliding system, the safety factor of the slope of K27 gently inclined bedding slope is 1.74, it is a stable slope. (6) under the sinusoidal loading of the slope, the coordination mechanism of the anti sliding system of the anchor pile of the bedding slope, the existence of the rebuilt Road on the slope top of the slope, is another difficult problem of the slope anti sliding design. The free vibration analysis and time history analysis of the slope under the action of the sinusoidal load on the top of the slope have been simulated. The conclusion is that under the action of the dynamic load of the slope, the anti sliding structure of the anchor pile can be coordinated with each other, and the response sensitivity of the anchor pile combination anti sliding system to the dynamic load is not consistent, which is mainly with the position of the load. The reasonable coordination interval concept of anchor pile composite structure under dynamic load is put forward. The reasonable coordination interval of the anchor cable is [95.62173.69]. The reasonable coordination interval of the pile is [197.46286.05]. combined with the monitoring data of the slope site, and the internal force 115.92kN of the anchorage cable and the internal force of the anti slide pile are in their respective reasonable coordination. In the interval range, the slope is in a stable state under the load of sinusoidal vehicle. In order to evaluate the stability of the dynamic load slope and the new method of controlling the dynamic load of the slope. (7) based on the numerical simulation of the infiltration condition of the K27 slope strengthened by the anchor frame pile combination anti sliding system, the final safety factor of the side slope under the condition of the torrential rain is 1.4. 9, the effect of the control is good. (8) based on the field test monitoring data processing, the force of the anchor cable Acting on the slope sliding direction is 115.92kN/m, and the force of the anti slide pile acting on the slide direction of the slope is 225.64kN/m. The slide force is assumed by the joint action of the anchor cable and the anti slide pile, and the anchor cable frame beam system bears the assumption. 33.94% of the sliding force, the 66.06%. of the anti slide pile system undertakes the sliding force in the design value range, it belongs to the stable slope, and the effect is good. (9) based on the orthogonal test optimization design, the anti slide pile's anti slide ability is larger than the anchor frame beam from the method of the control measures. The anchor cable prestress and the length of anchor length are obtained from the anchor cable optimization design. From the optimum design of the anti slide pile, the main effect of the pile length of anti slide pile is obtained. To make the maximum safety factor of the K27 slope as the standard, the proposed optimization scheme is determined. The proposed optimization scheme is 1.56, which not only saves the use of resources but also satisfies the standard requirements of the slope safety factor. And the utilization of resources has been improved.
【學(xué)位授予單位】:北京交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:U416.14

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張?zhí)燔?李云鵬;直立順層邊坡的黏彈性穩(wěn)定分析[J];力學(xué)與實(shí)踐;2003年06期

2 包曙光;;豐都至忠縣高速公路順層邊坡研究[J];工程建設(shè);2012年06期

3 覃京音;;順層邊坡失穩(wěn)分析及治理[J];技術(shù)與市場(chǎng);2013年03期

4 呂美君;晏鄂川;;順層邊坡巖體結(jié)構(gòu)穩(wěn)定性分析[J];地球與環(huán)境;2005年S1期

5 魏龍生;侯克鵬;肖慧;;應(yīng)用壓桿理論對(duì)順層邊坡潰屈失穩(wěn)分析[J];價(jià)值工程;2014年01期

6 李維光,張繼春;基于彈性理論的順層邊坡失穩(wěn)破壞力學(xué)模型分析[J];工程地質(zhì)學(xué)報(bào);2005年02期

7 葉志華;劉昌雄;;滬蓉西高速公路賀家坪段順層邊坡結(jié)構(gòu)穩(wěn)定性分析[J];山地學(xué)報(bào);2006年02期

8 尹文鋒;武衛(wèi)星;陳長(zhǎng)勝;;皂市庫(kù)區(qū)北岸線公路順層邊坡治理設(shè)計(jì)[J];人民長(zhǎng)江;2008年21期

9 萬(wàn)軍;;某公路順層邊坡失穩(wěn)影響因素及破壞機(jī)制[J];路基工程;2012年04期

10 趙寶云;張照秀;董倩;;重慶市干線公路順層邊坡危險(xiǎn)性模糊綜合評(píng)判[J];山西建筑;2012年29期

相關(guān)會(huì)議論文 前3條

1 白云峰;周德培;;渝懷線順層邊坡的工程地質(zhì)特征與類型劃分[A];巖石力學(xué)新進(jìn)展與西部開(kāi)發(fā)中的巖土工程問(wèn)題——中國(guó)巖石力學(xué)與工程學(xué)會(huì)第七次學(xué)術(shù)大會(huì)論文集[C];2002年

2 呂美君;晏鄂川;;順層邊坡巖體結(jié)構(gòu)穩(wěn)定性分析[A];中國(guó)地質(zhì)學(xué)會(huì)工程地質(zhì)專業(yè)委員會(huì)、貴州省巖石力學(xué)與工程學(xué)會(huì)2005年學(xué)術(shù)年會(huì)暨“巖溶·工程·環(huán)境”學(xué)術(shù)論壇論文集[C];2005年

3 楊治林;;順層邊坡巖體結(jié)構(gòu)的非完善屈曲性態(tài)研究[A];第二屆中國(guó)水利水電巖土力學(xué)與工程學(xué)術(shù)討論會(huì)論文集(一)[C];2008年

相關(guān)博士學(xué)位論文 前3條

1 李丹楓;高速公路砂泥巖順層邊坡組合抗滑體系協(xié)調(diào)效應(yīng)研究[D];北京交通大學(xué);2017年

2 劉才華;巖質(zhì)順層邊坡水力特性及雙場(chǎng)耦合研究[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2006年

3 胡啟軍;長(zhǎng)大順層邊坡漸進(jìn)失穩(wěn)機(jī)理及首段滑移長(zhǎng)度確定的研究[D];西南交通大學(xué);2008年

相關(guān)碩士學(xué)位論文 前5條

1 滕宏偉;順層邊坡穩(wěn)定性分析預(yù)測(cè)及其應(yīng)用研究[D];重慶大學(xué);2002年

2 雷遠(yuǎn)見(jiàn);順層邊坡穩(wěn)定性分析[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2006年

3 孫偉;砂泥巖緩傾順層邊坡穩(wěn)定性分析與支護(hù)效果評(píng)價(jià)[D];北京交通大學(xué);2014年

4 葉斌;廣巴高速順層邊坡結(jié)構(gòu)面力學(xué)參數(shù)及工程防護(hù)措施優(yōu)化設(shè)計(jì)研究[D];成都理工大學(xué);2008年

5 田洪寧;六盤(pán)水月照機(jī)場(chǎng)跑道高填方及下伏順層邊坡穩(wěn)定性研究[D];西南交通大學(xué);2011年

,

本文編號(hào):1934978

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1934978.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1e138***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com