天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

硫化鉛量子點(diǎn)的合成及其新型異質(zhì)結(jié)光伏器件的研究

發(fā)布時(shí)間:2018-05-25 21:33

  本文選題:硫化鉛量子點(diǎn) + 異質(zhì)結(jié)。 參考:《合肥工業(yè)大學(xué)》2017年博士論文


【摘要】:PbS是直接帶隙半導(dǎo)體材料,具有很高的吸收系數(shù),塊體材料的帶隙為0.41e V,其激子波爾半徑為18nm,通過控制合成條件很容易得到具有量子效應(yīng)且能帶大小可控的PbS量子點(diǎn),用以單結(jié)或多結(jié)的PbS量子點(diǎn)電池的制備。此外,PbS量子點(diǎn)還具有很強(qiáng)的多激子產(chǎn)生能力,在過去的數(shù)十年中,基于PbS量子點(diǎn)電池的研究受到科研人員的廣泛關(guān)注,轉(zhuǎn)化效率也有了突飛猛進(jìn)的發(fā)展。但是相比目前已經(jīng)發(fā)展成熟的第一代和第二代太陽(yáng)能電池來(lái)說,PbS量子點(diǎn)電池的轉(zhuǎn)化效率仍然偏低,電池性能的穩(wěn)定性相對(duì)較差,此外在PbS量子點(diǎn)合成方面由于硫源活性的限制,使得用于光伏電池的PbS量子點(diǎn)合成方法仍然單一,合成成本難以降低,并且電池的組裝過程難以面向大規(guī)模的工業(yè)化生產(chǎn),這些都是其進(jìn)一步的商業(yè)化發(fā)展的不利因素。因此發(fā)展綠色、廉價(jià)、大規(guī)模的量子點(diǎn)合成和器件組裝工藝,并進(jìn)一步研究電池機(jī)理和提高電池轉(zhuǎn)化效率具有十分重要的意義。針對(duì)以上,本文從構(gòu)建PbS量子點(diǎn)異質(zhì)結(jié)電池出發(fā),使用n型CdS替代電子傳輸層材料。從PbS量子點(diǎn)的合成出發(fā),使用陽(yáng)離子交換的方法獲得單分散性良好,尺寸可控的PbS量子點(diǎn),并使用這種量子點(diǎn)構(gòu)建多結(jié)異質(zhì)結(jié)電池。主要研究成果如下:1.發(fā)展了使用TMS作為硫源得到單分散性良好且性能穩(wěn)定的PbS量子點(diǎn)的技術(shù)路線。使用油酸合成的CdS量子點(diǎn)的十八烯溶液作為前驅(qū)體提供反應(yīng)所需的硫源,以PbCl_2/OLA和PbNO_3/OLA的前驅(qū)體溶液作為反應(yīng)的鉛源,使用離子交換的方法得到吸收峰位于800-1202nm范圍內(nèi)具有良好單分散性的PbS量子點(diǎn)并探索了在這種離子交換過程中陽(yáng)離子的固態(tài)擴(kuò)散機(jī)制。這種方法解決了傳統(tǒng)硫粉活性較低和TMS價(jià)格昂貴,穩(wěn)定性較差的問題,為合成單分散性良好且尺寸可控的PbS量子點(diǎn)和量子點(diǎn)表面的無(wú)機(jī)配體原位鈍化提供了一個(gè)新的思路。2.通過對(duì)反應(yīng)時(shí)間,反應(yīng)溶液濃度等的調(diào)控,實(shí)現(xiàn)了CdS薄膜在FTO表面上的可控生長(zhǎng)。在此基礎(chǔ)上旋涂組裝PbS量子點(diǎn)薄膜層,構(gòu)建新型CdS/PbS量子點(diǎn)異質(zhì)結(jié)光伏電池。通過插入MoO_3層得到PbS量子點(diǎn)與金屬電極之間良好的歐姆接觸,改善空穴傳輸性能,CdS薄膜的厚度的優(yōu)化處理,得到了目前在CdS/PbS異質(zhì)結(jié)結(jié)構(gòu)中報(bào)道的最高5.22%的轉(zhuǎn)化效率。化學(xué)浴沉積的方法具有合成溫度低,合成范圍大,對(duì)襯底材料的可選擇性大的優(yōu)點(diǎn),為大規(guī)模的工業(yè)化生產(chǎn)提供了前景,同時(shí)在制備過程發(fā)現(xiàn)的電池性能對(duì)CdS薄膜厚度強(qiáng)烈的依賴性也為此類光伏器件的構(gòu)建提供了很好的參考價(jià)值。3.使用化學(xué)浴沉積的方法在FTO上沉積一層CdS籽晶層,并結(jié)合水熱法生長(zhǎng)出CdS納米棒陣列。將PbS量子點(diǎn)旋涂滲入納米棒陣列的間隙位置,組裝了這種基于CdS納米棒陣列的3D異質(zhì)結(jié)結(jié)構(gòu)的量子點(diǎn)光伏電池。通過調(diào)控CdS籽晶層的厚度來(lái)調(diào)節(jié)納米棒陣列的間隙,PbS量子點(diǎn)溶液的旋涂速度改善其滲透性,對(duì)不同旋涂層數(shù)的PbS薄膜的表面形貌的掃描電鏡圖像、透射光譜和轉(zhuǎn)化效率進(jìn)行實(shí)時(shí)監(jiān)控,得到最優(yōu)層數(shù)的致密3D異質(zhì)結(jié)結(jié)構(gòu)。最后獲得了最高4.78%的轉(zhuǎn)化效率,相比同樣厚度的平面層有了明顯提升。4.使用陽(yáng)離子交換得到PbS量子點(diǎn),利用TBAI和EDT配體交換的量子點(diǎn)薄膜能帶結(jié)構(gòu)不同的特征,構(gòu)建了TiO_2/PbS結(jié)構(gòu)的多結(jié)異質(zhì)結(jié)量子點(diǎn)電池。通過多結(jié)異質(zhì)結(jié)的構(gòu)建,鹵素離子的鈍化,得到了7.89%的最高轉(zhuǎn)化效率,短路電流,開路電壓和填充因子分別為30.96m A/cm2,0.49 V和51.9%。研究了在這種多結(jié)結(jié)構(gòu)中由于EDT層較高的導(dǎo)帶位置載流子單向的傳輸機(jī)制,TBAI層和EDT層在光活性層中的主要作用等。此外,鹵素離子鈍化的量子點(diǎn)電池具有較長(zhǎng)的載流子擴(kuò)散長(zhǎng)度,在空氣中具有很好的穩(wěn)定性,同樣這種異質(zhì)結(jié)電池可作為自驅(qū)動(dòng)式的光電探測(cè)器,具有較快的響應(yīng)速度,在10k Hz的脈沖光下上升沿和下降沿的時(shí)間分別為4.4μs和37.2μs。
[Abstract]:PbS is a direct band gap semiconductor material with high absorption coefficient, the band gap of block material is 0.41e V and its exciton Bohr radius is 18NM. By controlling the synthetic conditions, it is easy to obtain the quantum dots with quantum effect and controllable size of PbS quantum dots, which are used for the preparation of single or multi junction PbS quantum dots batteries. In addition, PbS QDs are also available. In the past few decades, the research on PbS quantum dot batteries has been widely concerned by researchers, and the conversion efficiency has developed rapidly in the past few decades. However, the conversion efficiency of PbS QDs battery is still low compared with the mature first and second generation solar cells. The stability of the pool performance is relatively poor. In addition, due to the limitation of the sulfur source activity in the synthesis of PbS quantum dots, the synthesis of PbS quantum dots used in photovoltaic cells is still single, the cost of synthesis is difficult to reduce, and the assembly process of the battery is difficult to face large-scale industrial production. These are all its further commercialized development. Therefore, it is of great significance to develop green, cheap, large-scale quantum dot synthesis and device assembly processes, and to further study the mechanism of the battery and to improve the efficiency of the battery conversion. In this paper, we use the n CdS to replace the electron transport layer materials from the construction of PbS quantum dot heterojunction cells. The synthesis of PbS quantum dots is made in this paper. On the basis of the cation exchange method, the PbS quantum dots with good monodisperse, size controlled quantum dots and multi junction heterojunction batteries were constructed by using this quantum dot. The main research results are as follows: 1. the technical route of using TMS as a sulfur source to obtain good monodisperse and stable PbS quantum dots is developed. The CdS quantum synthesized by oleic acid is used. The point eighteen alkene solution is used as the precursor of the precursor to provide the sulfur source. The precursor solution of PbCl_2/OLA and PbNO_3/OLA is used as the lead source of the reaction. By ion exchange, the PbS quantum dots with good monodispersity within the range of 800-1202nm are obtained and the solid state expansion of the cation in this ion exchange process is explored. This method solves the problem of low activity of traditional sulfur powder, high price of TMS and poor stability. It provides a new idea for the synthesis of PbS quantum dots with good monodisperse and size controlled inorganic ligands on the surface of quantum dots..2. has realized the CdS thin through the regulation of the reaction time, the concentration of the reaction solution and so on. The controllable growth of the membrane on the FTO surface. On this basis, the PbS quantum dots film layer was assembled by spin coating, and a new CdS/PbS quantum dot heterojunction photovoltaic cell was constructed. The good ohmic contact between the PbS quantum dots and the metal electrodes was obtained by inserting the MoO_3 layer to improve the hole transmission performance and the optimization of the thickness of the CdS film, and the current CdS/PbS was obtained. The highest 5.22% conversion efficiency reported in the heterostructure. The chemical bath deposition method has the advantages of low synthesis temperature, large synthesis range and high selectivity to substrate material, which provides a prospect for large-scale industrial production. At the same time, the battery performance found in the preparation process is also dependent on the strong dependence of the thickness of CdS film. The construction of the volt device provides a good reference value.3. using a chemical bath deposition method to deposit a layer of CdS seed crystal on the FTO, and the CdS nanorod array is grown by the hydrothermal method. The PbS quantum dots are swirled into the gap position of the nanorod array, and the quantum dot photovoltaic power of the 3D heterojunction structure based on the CdS nanorod array is assembled. The clearance of the nanorod array is regulated by regulating the thickness of the CdS seed layer. The spin coating speed of the PbS quantum dots solution improves its permeability. The scanning electron microscope images, transmission spectra and conversion efficiency of the surface morphology of the PbS films with different layers of spin layers are monitored in real time, and the optimal layer number of dense 3D heterostructure is obtained. Finally, the structure of the compact 3D heterostructure is obtained. The maximum conversion efficiency of 4.78% is significantly higher than the same thickness of the plane layer..4. uses the cation exchange to obtain the PbS quantum dots. The quantum dot films with TBAI and EDT ligands have different structure characteristics, and the multi junction heterojunction quantum dot cells of the TiO_2/PbS structure are constructed. The maximum conversion efficiency of 7.89% is obtained. The short circuit current, the open circuit voltage and the filling factor are 30.96m A/cm2,0.49 V and 51.9%., respectively, to study the unidirectional transmission mechanism of the carrier position of the higher conduction band in the EDT layer, the main role of the TBAI layer and the EDT layer in the photoactive layer. In addition, the amount of halogen ion passivation. The sub cell has a long carrier diffusion length and has a good stability in the air. The same heterojunction battery can be used as a self actuated photoelectric detector. It has a fast response speed. The time of rising and falling along the pulse light of 10K Hz is 4.4 Mu s and 37.2 S. respectively.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.1;TM914.4

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 吳峰;蔡繼業(yè);;基于量子點(diǎn)的熒光共振能量轉(zhuǎn)移的應(yīng)用[J];化學(xué)與生物工程;2007年01期

2 季雷華;高素蓮;張斌;;量子點(diǎn)的合成、毒理學(xué)及其應(yīng)用[J];環(huán)境化學(xué);2008年05期

3 王富;劉春艷;;發(fā)光碳量子點(diǎn)的合成及應(yīng)用[J];影像科學(xué)與光化學(xué);2011年04期

4 伊魁宇;王猛;邵明云;;量子點(diǎn)作為離子探針的分析應(yīng)用[J];廣州化工;2012年11期

5 羅慧;李曦;方婷婷;劉鵬;;量子點(diǎn)的毒性研究進(jìn)展[J];材料導(dǎo)報(bào);2013年19期

6 田瑞雪;武玲玲;趙清;胡勝亮;楊金龍;;碳量子點(diǎn)的氨基化及其對(duì)發(fā)光性能的影響[J];化工新型材料;2014年01期

7 ;“量子點(diǎn)”晶體將推動(dòng)部分物理工藝的進(jìn)步[J];光機(jī)電信息;2002年10期

8 徐萬(wàn)幫;汪勇先;許榮輝;尹端l,

本文編號(hào):1934728


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1934728.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶45826***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com