基于井眼軌跡控制工具的主軸造斜性能研究
本文選題:井眼軌跡控制工具 切入點:主軸 出處:《長江大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:井眼軌跡控制工具是集信息化、智能化和自動化為一體,可精確和靈活控制復(fù)雜井眼軌跡的新型導(dǎo)向鉆井系統(tǒng),代表先進鉆井工具的發(fā)展趨勢,逐漸在超深井、高難定向井、叢式井、水平井、大位移井和分支井等特殊工藝井中得以應(yīng)用。這些井的鉆進精度、井眼軌跡質(zhì)量、鉆井速度和效率均取決于井眼軌跡控制工具主軸的井下力學(xué)行為和造斜性能。因此,本文依據(jù)“十一五”和“十二五”研究的井眼軌跡控制工具樣機和動態(tài)模擬測試臺架,開展了工具主軸造斜性能的理論研究、數(shù)值模擬與實驗驗證。根據(jù)井眼軌跡控制工具的具體結(jié)構(gòu),將工具主軸簡化為一端懸臂、另一端鉸支的超靜定梁,建立了主軸在彎曲狀態(tài)下的靜力學(xué)模型,構(gòu)建了工具外殼變形、偏心距與主軸撓度和偏轉(zhuǎn)角的相互關(guān)系,建立了偏心機構(gòu)作用力與偏心距、外殼載荷、上下端軸承間距等因素的函數(shù)關(guān)系,得到了工具主軸臨界鉆壓;依據(jù)樣機主軸的相關(guān)結(jié)構(gòu)參數(shù),對主軸靜力學(xué)模型進行了求解,得出了工具主軸的彎曲導(dǎo)向力、偏轉(zhuǎn)角和臨界鉆壓等關(guān)鍵參數(shù)值。針對偏心機構(gòu)內(nèi)環(huán)旋轉(zhuǎn)、外環(huán)旋轉(zhuǎn)和內(nèi)外環(huán)同時旋轉(zhuǎn)三種運動狀態(tài),研究了工具主軸彎曲變形后截面中心的運動規(guī)律;分析了驅(qū)動內(nèi)外偏心環(huán)旋轉(zhuǎn)的傳動件與內(nèi)環(huán)開孔的裝配關(guān)系;基于內(nèi)、外偏心環(huán)運動矢量合成,建立了內(nèi)外環(huán)合成偏心距、旋轉(zhuǎn)角度與主軸偏心矢量的運動模型,得出了內(nèi)外環(huán)偏轉(zhuǎn)與測點處主軸偏移量的關(guān)系,完成了井眼軌跡控制工具主軸的運動學(xué)分析。基于轉(zhuǎn)子動力學(xué)基本理論,結(jié)合Hamilton理論與能量法,在考慮鉆壓、扭矩、轉(zhuǎn)速等工作參數(shù)下,建立了井眼軌跡控制工具穩(wěn)態(tài)下的主軸動力學(xué)模型,為了求解該模型,建立了有限元分析模型,為研究主軸動力學(xué)特性和主軸造斜性能奠定了基礎(chǔ)。依據(jù)建立的工具主軸靜力學(xué)和運動學(xué)模型,對工具主軸的力學(xué)行為和造斜性能進行了數(shù)值模擬分析,得到了外殼剛度和載荷對主軸力學(xué)行為和造斜性能的影響規(guī)律,即偏心機構(gòu)作用力、主軸最大截面彎矩和主軸偏轉(zhuǎn)角隨外殼剛度的增加而增加,隨外殼載荷的增加而減小;模擬了偏心機構(gòu)安裝位置和主軸剛度對主軸力學(xué)行為和造斜性能的影響規(guī)律,提出了工具主軸的優(yōu)化設(shè)計方案,即保持主軸截面積不變而改變截面尺寸來降低主軸剛度,可減小偏心結(jié)構(gòu)作用力和主軸最大截面彎矩,且?guī)缀醪挥绊懼鬏S偏轉(zhuǎn)角和造斜性能;外殼剛度和主軸剛度比值最佳為25;外殼載荷將降低主軸的造斜性能,應(yīng)盡量減小;偏心機構(gòu)應(yīng)安裝在距上端懸臂軸承為主軸長度的9/12處。依據(jù)建立的主軸動力學(xué)模型,模擬了轉(zhuǎn)速和偏心距對主軸動力學(xué)特性和造斜性能的影響規(guī)律,得出在波動鉆壓激勵下,主軸動力學(xué)特性和造斜性能都呈現(xiàn)相應(yīng)的微小波動,即隨著轉(zhuǎn)速的增大,偏心機構(gòu)作用力、組合軸承支撐反力和主軸偏轉(zhuǎn)角的平均值不變,波動周期減小、頻率增大、振幅不變;隨著偏心距的增大,偏心機構(gòu)作用力、組合軸承支撐反力和主軸偏轉(zhuǎn)角的平均值增加,波動周期和頻率不變、振幅增加;模擬了轉(zhuǎn)速為60rpm、偏心距1~6mm變化時、測點處主軸偏移量的變化規(guī)律,結(jié)果表明主軸偏移量的平均值隨偏心距的增大而增大,波動周期和頻率不變、振幅增加。模擬了不同波動鉆壓下測點處主軸偏移量平均值的變化規(guī)律,結(jié)果顯示兩組數(shù)據(jù)基本相同,說明鉆壓的變化對主軸造斜性能幾乎沒有影響,因此在使用井眼軌跡控制工具作業(yè)時,可用小鉆壓鉆進,以保證更高的鉆井安全性。在井眼軌跡控制工具動態(tài)模擬測試臺架上,開展了工具主軸的造斜功能和造斜性能的室內(nèi)實驗,完成了主軸在空載和加載兩種狀態(tài)下主軸造斜偏移的室內(nèi)測試,共采集到了13740組測點處主軸偏移量的實驗數(shù)據(jù),并用拉伊達準則進行了處理分析。結(jié)果表明靜力學(xué)模型、運動學(xué)模型、動力學(xué)模型的計算結(jié)果與實驗結(jié)果的吻合度較高,最大誤差為4.7%,驗證了主軸的造斜性能。在工具主軸與內(nèi)偏心環(huán)接觸分析的基礎(chǔ)上,分析了偏心機構(gòu)內(nèi)環(huán)與主軸接觸應(yīng)力的變化規(guī)律,得到了內(nèi)外環(huán)合成偏心距、偏心機構(gòu)內(nèi)環(huán)寬度、偏心機構(gòu)內(nèi)環(huán)結(jié)構(gòu)圓角及主軸外徑對接觸應(yīng)力的影響規(guī)律;采用線性疲勞累積損傷理論并結(jié)合主軸材料的疲勞壽命實驗,建立了工具主軸的累積損傷計算公式,求解了主軸的疲勞壽命,結(jié)果表明主軸的造斜可靠性能夠得到保證。
[Abstract]:Well trajectory control tool is a set of information, intelligence and automation as a whole, a new steering drilling system for precise and flexible control of complex well trajectory, the development trend of advanced drilling tools, gradually in the ultra deep, difficult directional wells, cluster wells, horizontal wells, large displacement wells and wells branch special process the wells are used. These wells drilling accuracy, well trajectory quality, speed and efficiency are determined on the mechanical behavior of downhole drilling hole trajectory control tool spindle and whipstocking performance. Therefore, this paper on the basis of the "11th Five-Year" and "12th Five-Year" on the well trajectory control simulation test bench tool prototype and dynamic development the tool spindle deflecting performance theory research, numerical simulation and experimental verification. According to the specific structure of the well trajectory control tool, the tool spindle is simplified as the cantilever end, the other end hinged hyperstatic beams, The static model is established in main shaft bending condition, construction tool shell deformation, the relationship between the eccentricity and shaft deflection and the deflection angle of the eccentric force and eccentric mechanism is established from the housing, upper and lower bearing load, the function relationship between the distance and other factors, the tool spindle critical drilling pressure; according to the relevant parameters of the prototype structure the spindle, the spindle static model is solved, the bending guide force tool spindle are obtained, and the deflection angle of critical drilling pressure and other key parameters. According to the eccentric rotating inner ring, the outer ring and the outer ring rotation while rotating three kinds of motion, motion of the tool spindle center section after bending deformation; analysis the relationship between the internal and external driven assembly eccentric ring rotation of the drive piece and the inner ring hole; based on internal, external eccentric ring motion vector synthesis, established the synthesis of inner and outer ring eccentricity, rotation angle The motion model and spindle eccentricity vector, the relation between the inner and outer ring deflection and measuring point axis offset, the kinematics analysis of wellbore trajectory control tool spindle. The basic theory of rotor dynamics based on the combination of Hamilton theory and the energy method, considering the drilling pressure, torque, speed and other parameters, establishes the well trajectory control tool spindle dynamics model under steady state, in order to solve the model, a finite element analysis model is established for the study of dynamic characteristics of spindle, spindle and laid the foundation for deflecting performance. According to the static tool spindle mechanics and kinematics model, the mechanical behavior of the tool spindle and the deflecting performance is analyzed numerically. The shell stiffness and load on the main mechanical behavior and deflecting properties, namely eccentric force, spindle maximum bending moment and deflection angle of shell with rigid spindle The degree of increase with the increase of shell load decreases; simulation of the eccentric mechanism installation position and rigidity of spindle spindle on mechanical behavior and the influence law of oblique performance, put forward the optimized design scheme of the tool spindle, the spindle to maintain a constant cross section area and change the section size to reduce the stiffness of the spindle can be reduced. The structure of eccentric force and spindle maximum bending moment, and almost does not affect the spindle rotation angle and the oblique performance; stiffness ratio and stiffness of spindle shell is 25 best; housing load will reduce the spindle deflecting performance should be minimized; eccentric mechanism should be installed in the upper end of the cantilever bearing distance 9/12 spindle length. On the basis of the spindle dynamics model is established, simulation speed and eccentricity of spindle dynamics and deflecting properties, that fluctuations in the drilling pressure excitation, spindle dynamics and whipstocking can show Small fluctuations in the corresponding, that with the increasing of speed, eccentric force, bearing force and support the average of the spindle deflection angle, wave period decreases and the frequency increases, the amplitude unchanged; with the increase of eccentricity, eccentric force, bearing support force and spindle deflection angle of the average increase. Fluctuation cycle and frequency constant amplitude increase; the simulation speed is 60rpm, eccentricity 1~6mm change, change rule of measuring point axis offset, the result shows that the average value of the spindle offset with the eccentricity increase, wave period and frequency constant amplitude increase. To simulate the change law of different wave drill pressure measuring point spindle offset mean values, the results showed that the two groups of data are basically the same, that changes the drilling pressure has little effect on the performance of drilling spindle, therefore the use of well trajectory control tool operation, The available low bit pressure drilling, drilling to ensure more safety. In the dynamic simulation test bench control well trajectory, carry out the tool spindle deflecting function and deflecting properties of indoor experiments, completed the spindle in the unloaded and loaded under two spindle whipstocking offset indoor test, were collected the 13740 groups of experimental data of measuring points of spindle deviation, and analyzed by Rajda criterion. The results show the mechanical model, kinematics model, high degree of agreement calculation results of kinetic model and experimental results, the maximum error is 4.7%, verified the spindle deflecting performance in the tool spindle and the eccentric. Ring contact on the basis of the analysis, analyzed the inner eccentric mechanism and spindle contact stress, the inner and outer ring synthesis eccentricity, eccentric mechanism of inner ring width, round and spindle inner structure diameter eccentric mechanism Based on the linear fatigue cumulative damage theory and the fatigue life test of spindle material, the cumulative damage calculation formula of tool spindle is established, and the fatigue life of the spindle is solved. The results show that the reliability of the spindle is guaranteed.
【學(xué)位授予單位】:長江大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TE92
【相似文獻】
相關(guān)期刊論文 前10條
1 畢善斌;應(yīng)用優(yōu)化方法解決主軸設(shè)計問題的一種探討[J];機床;1986年01期
2 傅維椿;閻一工;;提升機主軸材料的斷裂特性[J];礦山機械;1986年04期
3 胡友安;黃幼玲;周軍;;主軸結(jié)構(gòu)優(yōu)化的有限元方法[J];河海大學(xué)常州分校學(xué)報;2007年01期
4 王海濤;李初曄;;提高主軸整體質(zhì)量的設(shè)計方法研究及應(yīng)用[J];制造技術(shù)與機床;2013年04期
5 孫銘啟;談?wù)動嘘P(guān)剛性主軸設(shè)計的幾個問題(續(xù))[J];組合機床通訊;1965年04期
6 蔣式昕;;切削有色金屬的超高精度主軸[J];儀器制造;1983年06期
7 申旭東;主軸、支承系統(tǒng)設(shè)計[J];中國釀造;1985年03期
8 楊厚華;夏榮海;;提升機主軸的逐點計算法[J];礦山機械;1985年01期
9 鐘恩光;王明道;;提升機主軸的優(yōu)化設(shè)計[J];礦山機械;1987年06期
10 夏雨;張云玲;王麗萍;;小型銑削中心主軸的靜態(tài)特性與模態(tài)分析[J];機械制造;2009年03期
相關(guān)會議論文 前3條
1 溫建立;熊萬里;黃紅武;;一類新型結(jié)構(gòu)的高速精密主軸單元的振動特性分析[A];振動利用技術(shù)的若干研究與進展——第二屆全國“振動利用工程”學(xué)術(shù)會議論文集[C];2003年
2 趙國平;呂允通;趙維平;邵立秋;;和面機主軸結(jié)構(gòu)的改進[A];中國機械工程學(xué)會包裝與食品工程分會第五屆學(xué)術(shù)年會論文集[C];1998年
3 萬永麗;;數(shù)控立式銑床的特性及主軸結(jié)構(gòu)的研究[A];2004年十一省區(qū)市學(xué)術(shù)年會論文集[C];2004年
相關(guān)博士學(xué)位論文 前2條
1 張紅;基于井眼軌跡控制工具的主軸造斜性能研究[D];長江大學(xué);2017年
2 李偉;高速精密氣動微主軸的關(guān)鍵技術(shù)研究[D];湖南大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 程茂龍;基于虛擬儀器的主軸動靜態(tài)特性測試系統(tǒng)的研究[D];浙江大學(xué);2015年
2 周玉杰;短電弧數(shù)控銑床主軸結(jié)構(gòu)優(yōu)化設(shè)計及動態(tài)特性分析[D];新疆大學(xué);2015年
3 戎榕;小型動靜壓振動主軸的設(shè)計與實驗研究[D];浙江工業(yè)大學(xué);2015年
4 李德生;瓷磚行星端面拋光機運動及結(jié)構(gòu)研究[D];景德鎮(zhèn)陶瓷學(xué)院;2013年
5 張璐;數(shù)控加工中心主軸熱特性分析[D];東北大學(xué);2014年
6 王軍潔;摩擦焊機主軸的靜動態(tài)特性的分析與研究[D];西安科技大學(xué);2015年
7 史鑫鵬;基于剛度優(yōu)化的機床主軸結(jié)構(gòu)設(shè)計與仿真[D];寧夏大學(xué);2016年
8 于志強;氣膜冷卻孔電火花加工用主軸機構(gòu)優(yōu)化設(shè)計[D];煙臺大學(xué);2016年
9 于文東;數(shù)控車床主軸分析與熱特性測試[D];大連理工大學(xué);2015年
10 管峰;氣體靜壓主軸設(shè)計及關(guān)鍵技術(shù)研究[D];國防科學(xué)技術(shù)大學(xué);2014年
,本文編號:1631831
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1631831.html