回撤通道圍巖變形破壞機(jī)理及其控制技術(shù)研究
本文選題:綜采工作面 切入點(diǎn):回撤通道 出處:《西安科技大學(xué)》2017年博士論文 論文類(lèi)型:學(xué)位論文
【摘要】:在綜采工作面末采階段,回撤通道受采動(dòng)影響劇烈易發(fā)生圍巖大變形而造成壓架事故,嚴(yán)重影響工作面的搬家回撤效率。本文以神南礦區(qū)綜采工作面回撤通道為工程背景,采用現(xiàn)場(chǎng)實(shí)測(cè)、理論分析、數(shù)值模擬和工業(yè)性試驗(yàn)相結(jié)合的綜合研究方法,以回撤通道與工作面貫通后的老頂破壞形式為出發(fā)點(diǎn),研究了回撤通道圍巖變形破壞機(jī)理和應(yīng)力分布規(guī)律,并提出回撤通道圍巖變形控制方法,主要取得了以下成果:(1)在神南礦區(qū)各煤層綜采工作面回撤通道現(xiàn)場(chǎng)監(jiān)測(cè)的基礎(chǔ)上,對(duì)不同煤層工作面回撤通道圍巖在時(shí)間和空間上變形破壞規(guī)律進(jìn)行研究,發(fā)現(xiàn)回撤通道圍巖變形量和破壞范圍遠(yuǎn)大于其他回采巷道,并且不同煤層工作面回撤通道之間的圍巖變形量和破壞范圍差異較大。(2)根據(jù)工作面與回撤通道貫通后的老頂斷裂位置,采用不同的力學(xué)模型分別推導(dǎo)了不同老頂破壞形式的頂板下沉量計(jì)算公式,分析老頂斷裂位置、工作面采煤條件、支護(hù)強(qiáng)度、巷道斷面尺寸等因素對(duì)回撤通道頂板下沉量的影響,并結(jié)合現(xiàn)場(chǎng)實(shí)測(cè)數(shù)據(jù)進(jìn)行對(duì)比分析;分別采用壓桿理論和極限平衡理論分析了回撤通道實(shí)體煤幫部破壞形式與塑性區(qū)范圍,通過(guò)上述為回撤通道圍巖控制和支護(hù)設(shè)計(jì)研究提供理論依據(jù)。(3)通過(guò)現(xiàn)場(chǎng)實(shí)測(cè)和數(shù)值模擬對(duì)工作面末采階段回撤通道的應(yīng)力演化過(guò)程進(jìn)行了研究,并采用理論方法研究工作面貫通后老頂在不同斷裂位置時(shí)的回撤通道圍巖應(yīng)力的分布規(guī)律,推導(dǎo)了單回撤通道外側(cè)實(shí)體煤和雙回撤通道保護(hù)煤柱的垂直應(yīng)力計(jì)算公式;通過(guò)將現(xiàn)場(chǎng)應(yīng)力實(shí)測(cè)數(shù)據(jù)與理論公式進(jìn)行反饋分析,確定了神南礦區(qū)各煤層工作面貫通后的老頂斷裂位置,為回撤通道圍巖控制方法提供依據(jù)。(4)在回撤通道圍巖變形破壞機(jī)理和應(yīng)力演化規(guī)律研究的基礎(chǔ)上,討論了回撤通道布置方式,提出雙回撤通道保護(hù)煤柱留設(shè)寬度的計(jì)算方法,并對(duì)采高控制、停采讓壓和強(qiáng)制放頂3種礦壓控制措施進(jìn)行了分析,研究了采高對(duì)頂板結(jié)構(gòu)和老頂斷裂位置的影響規(guī)律、停采讓壓位置以及強(qiáng)制放頂?shù)倪m用條件,在此基礎(chǔ)上確定了末采階段回撤通道礦壓控制技術(shù)措施。(5)分析了回撤通道內(nèi)垛式支架和錨桿(索)支護(hù)的作用機(jī)理,并提出了回撤通道的支護(hù)參數(shù)設(shè)計(jì)方法,將研究成果應(yīng)用于紅柳林煤礦15206工作面回撤通道,在采取礦壓控制措施的基礎(chǔ)上對(duì)原支護(hù)方案進(jìn)行優(yōu)化,實(shí)現(xiàn)了工作面與回撤通道的無(wú)來(lái)壓貫通,確保了該工作面的安全、快速回撤。
[Abstract]:In the final mining stage of fully mechanized coal mining face, it is easy to take place the large deformation of surrounding rock under the influence of mining movement, which results in the pressure frame accident, which seriously affects the moving and withdrawing efficiency of the working face. This paper takes the withdrawal passage of the fully mechanized mining face in Shennan Mining area as the engineering background. Using the method of field measurement, theoretical analysis, numerical simulation and industrial test, taking the failure form of the main roof after the passage of withdrawal and the working face through as the starting point, The deformation and failure mechanism and stress distribution of surrounding rock of withdrawal passage are studied, and the control method of surrounding rock deformation of retreat passage is put forward. The following results are obtained mainly: 1) on the basis of on-site monitoring of withdrawal passage of fully mechanized coal face in Shennan mining area, Based on the study of time and space deformation and failure law of surrounding rock of withdrawal passage in different coal seam face, it is found that the deformation and damage range of surrounding rock of withdrawal passage is much larger than that of other mining roadways. The deformation and failure range of surrounding rock between different coal face retreating channels are different greatly. (2) according to the main roof fracture position after connecting the coal face and the retreating passage, In this paper, different mechanical models are used to deduce the calculation formulas of roof subsidence in different failure forms of main roof, and the fracture position of main roof, coal mining condition of working face, and support strength are analyzed. The influence of roadway cross section size on the roof subsidence of the retreating passage is compared and analyzed in combination with the field measured data, and the failure form and plastic zone range of the solid coal roof of the retreating passage are analyzed by the theory of pressure bar and the limit equilibrium theory, respectively. The stress evolution process of the withdrawal tunnel in the final mining stage is studied through the field measurement and numerical simulation, which provides a theoretical basis for the study of the surrounding rock control and support design of the retreating tunnel. The distribution law of surrounding rock stress of the main roof in different fault positions after the working face is through is studied, and the formulas for calculating the vertical stress of the solid coal outside the single retreat passage and the coal pillar protected by the double return passage are derived. Through the feedback analysis of the field stress measured data and the theoretical formula, the position of the main roof fracture after the coal face is through in Shennan mining area is determined. On the basis of studying the deformation and failure mechanism and stress evolution law of surrounding rock, this paper discusses the layout of withdrawal passage, and puts forward a calculation method for protecting the width of coal pillar in double retreat channel. The control measures of mining height, stop-mining pressure and forced caving are analyzed. The influence of mining height on roof structure and main roof fracture position, stop-and-take pressure position and the suitable conditions of forced caving are studied. On the basis of this, the paper determines the technical measures of mine pressure control in the retreating passage at the end mining stage. It analyzes the action mechanism of the stacking support and the bolting (cable) support in the retreating passage, and puts forward the design method of the supporting parameters of the retreating passage. Applying the research results to the retreating passage of 15206 working face in Yu Hong Liulin Coal Mine, the original support scheme is optimized on the basis of adopting the control measures of mine pressure, which realizes the no pressure breakthrough between the working face and the retreat passage, and ensures the safety of the working face. Pull back quickly.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TD353;TD322
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 于學(xué)馥;軸變論與圍巖變形破壞的基本規(guī)律[J];鈾礦冶;1982年01期
2 肖福坤;孫豁然;;東海礦深部圍巖變形破壞分析[J];中國(guó)礦業(yè);2008年07期
3 馬元;何國(guó)軍;周振;戴仕敏;;深埋高應(yīng)力圍巖變形破壞三維物理模擬試驗(yàn)[J];交通科技與經(jīng)濟(jì);2009年01期
4 冀貞文,王懷新,王同吉;深井巷道圍巖變形破壞規(guī)律及其控制技術(shù)[J];煤炭工程;2004年02期
5 秦昊;茅獻(xiàn)彪;徐金海;;軟弱頂板煤巷圍巖變形破壞特征數(shù)值分析[J];采礦與安全工程學(xué)報(bào);2006年03期
6 胡玉銀;大埋深軟巖巷道圍巖變形破壞力學(xué)機(jī)制分析[J];水文地質(zhì)工程地質(zhì);1994年06期
7 李杰;宋春明;胡嘯;陳文濤;范鵬賢;;深部巷道圍巖變形破壞機(jī)制分析[J];巖土力學(xué);2012年S2期
8 李金奎,王金安,崔世海;深井大地壓泵房圍巖變形破壞特性研究[J];礦山壓力與頂板管理;2005年03期
9 任偉中,白世偉,孫桂鳳,葛修潤(rùn);厚覆蓋巖層條件下地下采礦的地表及圍巖變形破壞特性模型試驗(yàn)研究[J];巖石力學(xué)與工程學(xué)報(bào);2005年21期
10 任智敏;胡耀青;;大斷面矩形和六邊形煤巷圍巖變形破壞試驗(yàn)對(duì)比研究[J];煤礦開(kāi)采;2014年03期
相關(guān)會(huì)議論文 前2條
1 張曉科;秦四清;陶波;;圍巖變形破壞機(jī)制研究現(xiàn)狀綜述[A];第一屆中國(guó)水利水電巖土力學(xué)與工程學(xué)術(shù)討論會(huì)論文集(上冊(cè))[C];2006年
2 趙瑜;李曉紅;顧義磊;陳陸望;李丹;陳浩;;高應(yīng)力區(qū)隧道圍巖變形破壞的數(shù)值模擬及物理模擬研究[A];第九屆全國(guó)巖土力學(xué)數(shù)值分析與解析方法討論會(huì)論文集[C];2007年
相關(guān)博士學(xué)位論文 前2條
1 王博楠;回撤通道圍巖變形破壞機(jī)理及其控制技術(shù)研究[D];西安科技大學(xué);2017年
2 曹洋兵;大型地下水封儲(chǔ)氣庫(kù)圍巖變形破壞機(jī)制與錨噴支護(hù)研究[D];中國(guó)地質(zhì)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前4條
1 秦波;基于ABAQUS的深部巷道圍巖變形破壞規(guī)律及應(yīng)用研究[D];青島理工大學(xué);2013年
2 崔洪章;深部巷道圍巖變形破壞特征模擬研究及控制技術(shù)[D];太原理工大學(xué);2013年
3 周維超;不同施工條件下圍巖變形破壞機(jī)制研究[D];成都理工大學(xué);2011年
4 張瑩;錦屏一級(jí)水電站地下廠房圍巖變形破壞特征及地質(zhì)力學(xué)機(jī)制研究[D];成都理工大學(xué);2011年
,本文編號(hào):1630985
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1630985.html