液氧環(huán)境用改性氰酸酯樹(shù)脂體系的制備與性能研究
本文選題:氰酸酯樹(shù)脂 切入點(diǎn):增韌改性 出處:《哈爾濱工業(yè)大學(xué)》2017年博士論文 論文類(lèi)型:學(xué)位論文
【摘要】:為了滿(mǎn)足于新一代可重復(fù)使用航天器(RLV)推進(jìn)系統(tǒng)燃料貯箱(液氧)的減重設(shè)計(jì)要求,液氧貯箱用材料逐步采用樹(shù)脂基碳纖維復(fù)合材料(CFRP)取代原有的金屬材料,而CFRP中樹(shù)脂基體與液氧相容性是CFRP能否應(yīng)用在液氧環(huán)境中的關(guān)鍵因素,要求樹(shù)脂基體具有良好的低溫力學(xué)強(qiáng)度,熱穩(wěn)定性、優(yōu)阻燃性和優(yōu)異的液氧相容性,F(xiàn)今通用的環(huán)氧樹(shù)脂因其結(jié)構(gòu)缺陷,液氧相容性較差,無(wú)法滿(mǎn)足液氧環(huán)境使用要求。近年來(lái)出現(xiàn)的雙酚A型氰酸酯樹(shù)脂(CE)由于固化物具有獨(dú)特的三嗪結(jié)構(gòu),因而具有優(yōu)異的耐溫性、較好的抗氧化性,并且其工藝性?xún)?yōu)異,具備用于制備CFRP液氧貯箱材料的潛質(zhì),但是其低溫韌性差、阻燃性不足,需要改性應(yīng)用。目前關(guān)于改性后的氰酸酯樹(shù)脂在低溫液氧環(huán)境下應(yīng)用的研究工作尚未深入開(kāi)展。針對(duì)上述問(wèn)題,本文采用了氰酸酯樹(shù)脂為主體,通過(guò)引入不同改性組分的方式,制備了兩種改性氰酸酯樹(shù)脂體系及其CFRP,研究了其樹(shù)脂結(jié)構(gòu)組成與力學(xué)性能、液氧相容性、阻燃性等性能的關(guān)系,并分析CFRP界面失效機(jī)理。本文采用低粘度環(huán)氧樹(shù)脂(EP)和高性能耐溫塑料(PES-C)共增韌改性雙酚A型氰酸酯樹(shù)脂(CE),合成了改性CYEP氰酸酯樹(shù)脂。研究結(jié)果表明,EP和PES-C能促進(jìn)CE自聚反應(yīng),提高CE樹(shù)脂的低溫(-196℃)韌性,但是對(duì)CE樹(shù)脂的熱穩(wěn)定性有一定影響。18wt%的EP和6wt%的PES-C共混合加入到CE中制備得到的CYEP matrix(CYEP6)兼具良好的低溫韌性、工藝性、耐熱性和粘接穩(wěn)定性等綜合性能。-196℃下,CYEP matrix的沖擊韌性比純CE樹(shù)脂提高了近200%,而模量下降僅為約6%,其經(jīng)過(guò)15次冷熱循環(huán)交變(-196℃~50℃)后表面無(wú)裂紋。CYEP matrix經(jīng)177℃/4h+200℃/2h固化后,單體轉(zhuǎn)化率95%,80℃樹(shù)脂黏度僅為734 cp,并維持4h工藝黏度無(wú)明顯變化。CYEP matrix粘接雙馬樹(shù)脂基CFRP剪切試樣,在空氣中經(jīng)200℃/1000h老化后,剪切強(qiáng)度保持率大于80%,然而CYEP matrix阻燃測(cè)試為V1級(jí),需進(jìn)一步改進(jìn)阻燃性。本文自制了含苯醚鍵雙馬樹(shù)脂(BMPB)和耐高溫活性稀釋劑(DABDGE)加入到CYEP matrix樹(shù)脂,制備了具有阻燃性的改性氰酸酯樹(shù)脂(CEBM)。實(shí)驗(yàn)結(jié)果表明,BMPB中加入5wt%的DABDGE后,體系的黏度明顯降低,而IDT溫度下降不足10%。7wt%的BMPB改性CYEP matrix,得到了阻燃性提和低溫韌性均較優(yōu)異的CEBM7(CEBM matrix)基體,但過(guò)多的BMPB加入體系的沖擊韌性和工藝黏性變差。在-196℃下,CEBM matrix沖擊韌性CYEP matrix樹(shù)脂的提高了20%,30次冷熱循環(huán)后沖擊強(qiáng)度保持率大于85%。CEBM matrix的阻燃性達(dá)到V0級(jí)別,具有自熄性,其工藝黏性和貯存穩(wěn)定性與CYEP matrix樹(shù)脂相當(dāng)。本文對(duì)合成的CYEP樹(shù)脂和CEBM樹(shù)脂的(液)氧相容性及失效機(jī)理進(jìn)行分析。研究結(jié)果表明,BMPB的含量和環(huán)氧基團(tuán)的含量是影響基體樹(shù)脂與液氧相容性的關(guān)鍵因素,尤其是BMPB與CE共聚形成的氮雙雜環(huán)結(jié)構(gòu)對(duì)基體的(液)氧相容性提升有明顯效果。BMPB的含量超過(guò)5wt%時(shí),其氧增重的起始溫度提高近40℃,IRS值下降到4%以下,相反,當(dāng)環(huán)氧樹(shù)脂含量超過(guò)15wt%,其IRS值急速增加;不同的基體樹(shù)脂中,分散相粒子的微觀形貌和氧增重量不受熱氧老化過(guò)程影響,但是在液氧沖擊過(guò)程中,相界面明顯展示出氧不相容。CEBM matrix液氧連續(xù)浸泡30天后,基體力學(xué)強(qiáng)度保持率80%。采用動(dòng)態(tài)接觸角測(cè)試和微滴脫粘法測(cè)試等方法對(duì)不同基體與碳纖維界面性能進(jìn)行了評(píng)價(jià)。結(jié)果表明,基體樹(shù)脂的低黏度和增大極性在有利于提高其與碳纖維浸潤(rùn)性。提高基體自身強(qiáng)度、增加纖維表面粗糙程度和浸潤(rùn)性,能提高基體與纖維的界面剪切強(qiáng)度(IFSS)和斷裂韌性Gdc。在Tg±50℃成形溫度范圍內(nèi),成形溫度溫度每升高10℃,IFSS值提高約3%。基體樹(shù)脂中DABDGE稀釋劑的加入有利于基體和纖維的界面過(guò)渡層的形成,分散應(yīng)力并阻止裂紋擴(kuò)展,其中CEBM基體與纖維表面形成約200nm的界面過(guò)渡層。考察了兩種基體碳纖維復(fù)合材料的宏觀力學(xué)性能和液氧相容性。研究結(jié)果表明,CEBM matrix基復(fù)材具有優(yōu)異的低溫力學(xué)強(qiáng)度,層間剪切強(qiáng)度(ILSS)為102.5MPa(-196℃),軸向拉伸強(qiáng)度可達(dá)2602MPa(-196℃)。樹(shù)脂中增韌材料的過(guò)多加入對(duì)復(fù)合材料的整體性能提高不明顯。CEBM matrix基層合板試樣經(jīng)過(guò)40次冷熱循環(huán)后,復(fù)材表面無(wú)明顯的微裂紋產(chǎn)生。復(fù)合材料試樣表面缺陷是影響其液氧浸泡失效的關(guān)鍵因素,其浸泡后的IRS值比無(wú)缺陷試樣的IRS值大5倍。
[Abstract]:In order to satisfy the new generation of reusable spacecraft propulsion system (RLV) fuel tank (LOX) designed to lose weight, liquid oxygen tank material gradually using resin based carbon fiber composite (CFRP) to replace the original metal materials, and CFRP resin matrix and the LOX compatibility is the key factor of whether the application of CFRP in the oxygen environment, requirements of resin matrix with low temperature strength, good thermal stability, excellent flame retardancy and excellent compatibility. The general liquid epoxy resin because of its structural defects, oxygen poor compatibility, can not meet the environmental requirements of LOX. Bisphenol A cyanate ester resin (CE) emerged in recent years. The cured product has three triazine unique structure, which has excellent heat resistance, good oxidation resistance, and its technology is excellent, have used for the preparation of CFRP liquid oxygen tank material potential, but its toughness in low temperature Flame retardant, lack of need modification application. Current research on the modification of cyanate ester resin was used in cryogenic liquid oxygen environment has not been carried out. Aiming at the above problems, this paper adopts the cyanate ester resin as the main body, through the introduction of different modified components, preparation of two kinds of modified cyanate ester the resin system and CFRP, to study the structure of resin composition and mechanical properties, oxygen compatibility, flame retardant properties of the relationship, and analyze the failure mechanism of CFRP interface. This paper adopts low viscosity epoxy resin (EP) and the performance of high temperature resistant plastic (PES-C) Co toughening modification of bisphenol A cyanate ester resin (CE) CYEP, modified cyanate ester resin was synthesized. The results showed that EP and PES-C can promote the self polymerization of CE, improve the CE resin at low temperature (-196 DEG C) toughness, but the thermal stability of CE resin has certain influence on.18wt% EP and 6wt% PES-C were mixed into CE The prepared CYEP matrix (CYEP6) with low temperature toughness, good processability, comprehensive performance of heat resistance and adhesive stability of.-196 DEG C, the impact toughness of CYEP matrix was nearly 200% higher than that of pure CE resin, and the modulus decreased only about 6%, after the 15 thermal cycles (alternating -196 ~50 DEG C) after the surface crack of.CYEP matrix by 177 DEG /4h+200 DEG /2h after curing, the monomer conversion rate of 95%, 80 C resin viscosity is 734 CP, and the maintenance of 4H process viscosity did not change significantly in.CYEP based CFRP matrix bismaleimide resin adhesive shear specimens, aging in the air by 200 DEG /1000h, the shear strength retention rate is greater than 80%, while the CYEP matrix flame test for V1 class, need to be further improved. This paper made a flame retardant containing benzene ether bismaleimide resin (BMPB) and high temperature reactive diluent (DABDGE) into CYEP matrix resin, preparation of cyanate ester resin modified with flame retardancy (CEBM ). The experimental results show that adding 5wt% DABDGE in BMPB, the viscosity of the system decreased significantly, while the IDT temperature drops less than 10%.7wt% BMPB CYEP matrix has been modified, flame retardant and low temperature toughness were provided excellent CEBM7 (CEBM matrix) matrix, but too much BMPB into the system of impact toughness and the process of viscous variation. At -196 DEG C, CEBM matrix CYEP matrix resin impact toughness increased by 20% after 30 thermal cycles, the impact strength retention rate is greater than the 85%.CEBM matrix flame retardant reached V0 level, self extinguishing, its viscosity and storage stability of a process with CYEP matrix resin. The synthesis of CYEP resin and CEBM resin (liquid) oxygen compatibility and failure mechanism were analyzed. The results show that the content of BMPB and epoxy groups is the effect of matrix resin and liquid oxygen compatible key factors, especially BMPB and CE copolymer formed by nitrogen Double heterocyclic structure on the matrix (liquid) oxygen compatibility enhancing effect of.BMPB content was more than 5wt%, the increase of the initial temperature oxygen increase the weight of nearly 40 degrees, the IRS value dropped to below 4%, on the contrary, when the content of epoxy resin is more than 15wt%, the IRS value increased rapidly; the matrix resin in different. The morphology of dispersed phase particles and oxygen increasing weight is not the process of aging effect, but in the liquid oxygen in the process of impact, showing obvious phase interface is not compatible with.CEBM matrix oxygen oxygen continuously for 30 days, the mechanical strength retention rate of 80%. by dynamic contact angle test and micro droplet debonding method testing method for different matrix and the interface properties of carbon fiber were evaluated. The results show that the low viscosity resin and increase in polarity can improve the wettability of carbon fiber and matrix. To improve its strength and increase the fiber surface roughness and wettability, can raise the The interfacial shear strength and fiber (IFSS) and fracture toughness of Gdc. in Tg + - 50 DEG forming temperature range, forming temperature increasing the temperature of 10 DEG C, the IFSS value increased to form about 3%. matrix resin DABDGE diluent adding interfacial transition layer to matrix and fiber, disperse stress and prevent crack propagation. The interface transition layer about 200nm is formed on the surface of CEBM matrix and fiber. The effects of two kinds of macro mechanical properties and oxygen matrix carbon fiber composite material compatibility. The results show that the CEBM matrix composite material with low temperature and excellent mechanical strength, interlaminar shear strength (ILSS) to 102.5MPa (-196 C), axial tension the strength can reach 2602MPa (-196 C). Too much to join the whole performance of the composite material increased.CEBM matrix laminates subjected to 40 thermal cycles after toughening material, resin, composite surface without producing obvious micro cracks The surface defect of the composite specimen is the key factor affecting the liquid oxygen immersion failure. The IRS value after immersion is 5 times larger than the IRS value of the non defect sample.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TQ320.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳素英;;淺談液氧充裝管路設(shè)計(jì)要注意的幾個(gè)問(wèn)題[J];化工技術(shù)與開(kāi)發(fā);2006年11期
2 趙永明;液氧液面計(jì)故障的處理[J];深冷技術(shù);1976年05期
3 葉剛;液氧技術(shù)好處多[J];勞動(dòng)保護(hù);1982年06期
4 Б.А.Иванов,А.С.Розовский,黃佩銘;與液氧接觸材料的某些特性[J];深冷技術(shù);1982年05期
5 宮仁基;液氧液面計(jì)忽起忽落的原因及處理[J];深冷技術(shù);1989年06期
6 戴春花;一起液氧罐出口管道爆炸事故[J];深冷技術(shù);1993年06期
7 凌晨,馬曉光;空分主冷反充液氧冷開(kāi)工的實(shí)踐[J];冶金動(dòng)力;1995年06期
8 黃川華;;液氧充裝安全管理[J];深冷技術(shù);2011年04期
9 田現(xiàn)德;金振宗;沈榮;孔凡魁;閆偉東;;提升液氧后備汽化系統(tǒng)的輸送能力[J];深冷技術(shù);2013年01期
10 黃佩銘;國(guó)外技術(shù)情報(bào)—— 美國(guó)的液氧生產(chǎn)[J];深冷簡(jiǎn)報(bào);1961年01期
相關(guān)會(huì)議論文 前10條
1 王戈;李公義;李效東;劉長(zhǎng)軍;;聚合物材料與液氧相容性評(píng)價(jià)方法探討[A];探索創(chuàng)新交流--中國(guó)航空學(xué)會(huì)青年科技論壇文集[C];2004年
2 楊桂麗;;優(yōu)化槽車(chē)充裝工藝[A];空分設(shè)備技術(shù)交流會(huì)論文集[C];2005年
3 劉軍;賈漢泉;;關(guān)于使用液氧的一點(diǎn)體會(huì)[A];全省醫(yī)療設(shè)備管理研討會(huì)論文集[C];1998年
4 段玉峰;栗曉宏;龐忠軍;;進(jìn)口液氧循環(huán)泵備件國(guó)產(chǎn)化[A];河北冶金學(xué)會(huì)2013年度空分專(zhuān)業(yè)學(xué)術(shù)交流會(huì)論文集[C];2013年
5 計(jì)虎掌;;大型液氧“內(nèi)壓縮”中壓空分流程主要參數(shù)分析計(jì)算[A];第四屆全國(guó)低溫工程學(xué)術(shù)會(huì)議論文集[C];1999年
6 計(jì)虎掌;;大型液氧“內(nèi)壓縮”中壓空分流程主要參數(shù)分析計(jì)算[A];上海市制冷學(xué)會(huì)一九九九年學(xué)術(shù)年會(huì)論文集[C];1999年
7 賴(lài)曉峰;;液氧中微量烴的分析[A];全國(guó)氣體標(biāo)準(zhǔn)化技術(shù)委員會(huì)、全國(guó)半導(dǎo)體材料和設(shè)備標(biāo)準(zhǔn)化技術(shù)委員會(huì)氣體分會(huì)、全國(guó)標(biāo)準(zhǔn)樣品技術(shù)委員會(huì)氣體標(biāo)樣工作組第四屆成立大會(huì)暨四屆一次聯(lián)合會(huì)議論文集[C];2010年
8 趙耀中;劉玉濤;;電容液面計(jì)在高壓液氧容器上的適用性分析[A];第九屆全國(guó)低溫工程大會(huì)論文集[C];2009年
9 王蘇;李帥輝;范秉誠(chéng);何宇中;崔季平;;火箭自增壓微量氣體組分質(zhì)譜測(cè)量[A];第十四屆全國(guó)激波與激波管學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2010年
10 柴朋軍;胥莉;;氰酸酯樹(shù)脂改性研究[A];中國(guó)硅酸鹽學(xué)會(huì)2003年學(xué)術(shù)年會(huì)論文摘要集[C];2003年
相關(guān)重要報(bào)紙文章 前8條
1 王s∷錛凸,
本文編號(hào):1628436
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1628436.html