一維復(fù)合納米結(jié)構(gòu)的可控構(gòu)筑及其超級(jí)電容器電極性能研究
本文關(guān)鍵詞: 超級(jí)電容器電極材料 一維復(fù)合納米結(jié)構(gòu) 靜電紡絲 導(dǎo)電聚合物 金屬氧化物 碳納米纖維 出處:《吉林大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:能源危機(jī)與環(huán)境問題是當(dāng)前人類社會(huì)面臨的兩大挑戰(zhàn),隨著世界人口的增長與全球經(jīng)濟(jì)的發(fā)展,開發(fā)高效、清潔、可持續(xù)的新能源以及先進(jìn)的能量存儲(chǔ)與轉(zhuǎn)換器件已經(jīng)成為當(dāng)務(wù)之急。超級(jí)電容器,又稱為電化學(xué)電容器,具有功率密度大、充放電速度快、循環(huán)壽命長、安全性能好、成本低廉以及綠色環(huán)保等優(yōu)點(diǎn),是一種新型的儲(chǔ)能裝置。眾所周知,電極材料是決定超級(jí)電容器性能的一個(gè)重要因素,所以開發(fā)高性能電極材料已成為近年來的研究熱點(diǎn)。一維納米結(jié)構(gòu)具有較大的長徑比,能夠增加電極與電解液之間的可接觸面積,并縮短電子與離子的傳輸路徑,有利于提高電極的電容性能。超級(jí)電容器常用的電極材料包括碳材料、金屬氧化物(MOs)、導(dǎo)電聚合物等,然而,單一組分電極材料由于較小的理論比電容(碳材料)、較低的導(dǎo)電性(MOs)、較差的循環(huán)穩(wěn)定性(導(dǎo)電聚合物)以及不理想的表面性質(zhì)等,已經(jīng)無法滿足應(yīng)用要求。一般認(rèn)為,設(shè)計(jì)和構(gòu)筑復(fù)合納米結(jié)構(gòu)材料,利用各組分間的協(xié)同效應(yīng),充分發(fā)揮其效能,是增強(qiáng)超級(jí)電容器電極性能的一種有效手段。本論文以上述三種常用的電極材料為研究對(duì)象,從設(shè)計(jì)與構(gòu)筑一維復(fù)合納米結(jié)構(gòu)的角度出發(fā),旨在通過對(duì)材料的組成與形貌進(jìn)行調(diào)控,來改善超級(jí)電容器電極的性能,進(jìn)而為一維復(fù)合納米結(jié)構(gòu)材料在能量存儲(chǔ)領(lǐng)域的應(yīng)用奠定一定的科學(xué)基礎(chǔ)。具體內(nèi)容如下:1.一維導(dǎo)電聚合物基電極材料:導(dǎo)電聚合物,尤其是聚苯胺(PANi),是一種典型的贗電容材料。以PANi為基底或殼層,利用簡單溫和的模板法,在體系中引入無機(jī)組分,通過改善PANi自身性能或防止MOs溶解,來提高一維復(fù)合電極材料在中性電解液中的電容性能。(1)以Bi_2S_3納米線為犧牲模板和Bi源,HCl為摻雜劑和Cl源,在低溫下,“一鍋”合成了新穎的PANi刺/Bi OCl片一維多級(jí)納米結(jié)構(gòu)材料(BPB)。相鄰PANi刺之間的空隙有利于電解液離子的擴(kuò)散,同時(shí),Bi OCl對(duì)摻雜H+的穩(wěn)定作用能使BPB在中性條件下保持電化學(xué)活性。與HCl摻雜的PANi電極相比,該異質(zhì)結(jié)構(gòu)電極表現(xiàn)出較高的比電容(169.9 F g-1,0.5 A g-1)與倍率性能(15.6%,4.0 A g-1),其循環(huán)穩(wěn)定性也有所提高。(2)以單晶VO2納米帶為活性模板,利用原位聚合法,將PANi殼層均勻地沉積在VO2表面,得到了VO2@PANi同軸納米帶。該方法不需要表面活性劑的輔助,通過調(diào)節(jié)反應(yīng)時(shí)間與體系p H,可以擴(kuò)展到核/卵黃-殼或中空無機(jī)/有機(jī)功能納米材料的合成。所制備的VO2@PANi電極具有較高的比電容值,為246.0 F g-1(0.5 A g-1),高于VO2電極的160.9 F g-1與HCl摻雜PANi電極的139.4 F g-1;同時(shí),VO2@PANi電極的倍率性能也有所改善,當(dāng)電流密度增大10倍時(shí),其比電容保持率能夠達(dá)到27.3%,而VO2電極僅為11.3%;1000次充放電循環(huán)后,VO2@PANi電極的比電容為初始值的28.6%,高于HCl摻雜的PANi電極(2.8%)。2.一維金屬氧化物基電極材料:除了導(dǎo)電聚合物,無機(jī)MOs是另一種常用的贗電容材料。α-Fe2O3具有較高的理論比電容,且無毒性、耐腐蝕、原料來源豐富,然而,其較差的導(dǎo)電性導(dǎo)致比電容的實(shí)驗(yàn)值遠(yuǎn)低于理論值。為了解決上述問題,我們將α-Fe2O3與其它MOs復(fù)合,即以靜電紡α-Fe2O3納米管為主體,通過摻雜V2O5與包覆MnO_2殼層兩種方式,對(duì)復(fù)合材料的結(jié)構(gòu)與組成進(jìn)行設(shè)計(jì)調(diào)控,來改善其電化學(xué)性能。(1)結(jié)合靜電紡絲與高溫?zé)Y(jié)技術(shù)制備了一系列不同組成的V2O5/α-Fe2O3納米管。當(dāng)V2O5/Fe2O3質(zhì)量比為1.0%時(shí),復(fù)合電極材料表現(xiàn)出較高的比電容(183 F g-1,1.0 A g-1)與循環(huán)穩(wěn)定性(81.5%,200次循環(huán)),且其倍率性能與α-Fe2O3納米管電極相當(dāng)(60%,5.0 A g-1)。(2)以靜電紡α-Fe2O3納米管為核,利用簡單的化學(xué)浴沉積法,合成了不同MnO_2含量的α-Fe2O3@MnO_2核殼異質(zhì)結(jié)構(gòu)材料。與基于MnO_2納米結(jié)構(gòu)的電極相比,該復(fù)合材料,尤其是FM10020(MnO_2含量為60.1 wt%),具有較大的比電容值(289.9 F g-1,1.0 A g-1)、較好的倍率性能(40.8%,5.0 A g-1)與較高的循環(huán)穩(wěn)定性(85.3%,1200次循環(huán))。3.改性碳纖維基電極材料:對(duì)于兩種MOs的復(fù)合電極材料,由于存在電化學(xué)溶解與導(dǎo)電性差的問題,導(dǎo)致其電容性能在很大程度上并不理想。改善MOs電極材料性能的另一種可行方法是將其與導(dǎo)電基質(zhì)復(fù)合。靜電紡碳納米纖維(CNFs)除了具有碳材料的固有優(yōu)點(diǎn)外,其可加工性強(qiáng),孔結(jié)構(gòu)可調(diào),被認(rèn)為是良好的導(dǎo)電支撐基底。在聚合物紡絲液前驅(qū)體中引入金屬鹽,可以有效提高CNFs基質(zhì)的石墨化程度,并造成多孔結(jié)構(gòu),從而得到改性的C-MOx復(fù)合納米纖維。我們主要以C-MOx為支撐基質(zhì),通過在其表面修飾含氮碳層或包覆MnO_2殼層,來增強(qiáng)多元復(fù)合體系電極材料的電化學(xué)性能。(1)采用靜電紡絲、化學(xué)氣相聚合與高溫煅燒技術(shù),制備了表面含氮的C-Co Ox-C多孔復(fù)合納米纖維。由于較高的含碳量與較大的Co Ox粒子,C-Co Ox-C電極的比電容并不理想;然而,與C-Co Ox相比,C-Co Ox-C含氮碳層良好的導(dǎo)電性與獨(dú)特的保護(hù)機(jī)制使其倍率性能與循環(huán)穩(wěn)定性均較高。(2)以靜電紡C-MOx(M=Mn、Cu、Co)復(fù)合納米纖維為基底,在其表面沉積MnO_2層,得到一系列C-MOx@MnO_2一維核殼異質(zhì)結(jié)構(gòu)。通過提高碳纖維基底的石墨化度或混入金屬Cu,有效改善了C-MOx@MnO_2的導(dǎo)電性,同時(shí),C-MOx核不僅可以作為活性材料參與電荷存儲(chǔ)過程,還能充當(dāng)導(dǎo)電基質(zhì)使殼層MnO_2充分利用,并引入?yún)f(xié)同效應(yīng)。與基于CNFs@MnO_2核殼結(jié)構(gòu)的電極相比,C-MOx@MnO_2電極表現(xiàn)出較高的比電容與倍率性能,且循環(huán)穩(wěn)定性良好。這些實(shí)驗(yàn)結(jié)果將會(huì)為進(jìn)一步增強(qiáng)碳纖維或金屬氧化物基電極材料的電容性能提供可選擇的途徑。
[Abstract]:The energy crisis and environmental problems are the two major challenges facing human society, with the development of the world's population growth and global economic development of efficient, clean, sustainable energy and energy storage converter and advanced parts has become a pressing matter of the moment. The super capacitor, also known as electrochemical capacitor with high power density, charge discharge speed, long cycle life, good safety performance, low cost and green environmental protection and other advantages, is a new energy storage device. As everyone knows, the electrode material is an important factor in determining the performance of the super capacitor, so the development of high performance electrode material has become a research hotspot in recent years. One dimensional nano structure has larger the ratio of length to diameter, can increase the contact area between the electrode and the electrolyte, and shorten the transmission path of electron and ion, is conducive to improve the capacitance performance of electrode of super capacitor. Electrode materials commonly used include carbon materials, metal oxide (MOs), conductive polymers, however, the single electrode material due to the smaller capacitance theory (carbon), lower conductivity (MOs), the poor cycle stability (conductive polymer) and poor surface properties, has been unable to to meet the application requirements. Generally, the design and construction of composite nano structured materials, the synergistic effect among the components, give full play to its effectiveness, is an effective means to increase the performance of the super capacitor electrode. The above three kinds of common electrode material as the research object, from the design and fabrication of one dimensional nano composite structure point of view, aimed at controlling through the composition and morphology of the materials, to improve the performance of the super capacitor electrode, and for the application of one-dimensional composite nano structure materials in the field of energy storage provide a branch Basis. Details are as follows: 1. one-dimensional conductive polymer based electrode materials, conductive polymers, especially polyaniline (PANi), is a kind of typical pseudocapacitive materials. With PANi as substrate or shell, using the template method is simple and mild, introduction of inorganic group in the system, to prevent the dissolution of MOs by improving the performance of PANi itself or, to improve the capacitance performance of one-dimensional composite electrode in neutral electrolyte. (1) using Bi_2S_3 nanowires as sacrificial template and Bi source, HCl and Cl as the dopant source, at low temperatures, "one pot" synthesis of a novel PANi /Bi OCl thorn one-dimensional hierarchical nanostructured materials (BPB) space. Between adjacent PANi thorn have spread to the electrolyte ions and stabilization of Bi OCl on H+ doping can maintain BPB electrochemical activity in neutral conditions. Compared with PANi doped HCl electrode, the heterostructure electrode exhibits high specific capacitance (169. 9 F g-1,0.5 A g-1) and ratecapability (15.6%, 4 A g-1), the cycle stability is also improved. (2) crystal VO2 nanobelts as active template by in situ polymerization, PANi shell uniformly deposited on the surface of VO2, the VO2@PANi coaxial nanobelts. The method does not need auxiliary surface the active agent, by adjusting the reaction time and the system can be extended to P H, a nuclear - shell or hollow / yolk synthesis of inorganic / organic functional materials. The specific capacitance of the VO2@PANi electrode prepared with high, 246 F g-1 (0.5 A g-1), higher than that of VO2 electrode in 160.9 F g-1 and HCl the doped PANi electrode in 139.4 F g-1; at the same time, rate performance of VO2@PANi electrode is improved, when the current density increased by 10 times, the specific capacitance retention rate can reach 27.3%, while the VO2 electrode is only 11.3%; after 1000 cycles, the specific capacitance of the VO2@PANi electrode for the initial value of 28.6%, high PANi electrode in HCl doped.2. (2.8%) of one-dimensional metal oxide based electrode materials: in addition to conductive polymer, inorganic MOs is another commonly used pseudocapacitive materials. Alpha -Fe2O3 has a high theoretical specific capacitance, and no toxicity, corrosion resistance, rich source of raw materials, however, its poor conductivity leads to far below the theoretical the value of the specific capacitance of the experimental value. In order to solve the above problems, we will alpha -Fe2O3 and other MOs compound, namely to electrospun alpha -Fe2O3 nanotubes as the main body, by doping V2O5 and coated with MnO_2 shells in two ways, the regulation of the structure of the composite material and design, to improve its electrochemical performance. (1) a series of V2O5/ alpha -Fe2O3 nanotubes was synthesized by electrospinning and high temperature sintering process. When the mass ratio of V2O5/Fe2O3 is 1%, the composite electrode materials exhibit high specific capacitance (183 F g-1,1.0 A g-1) and cycle stability (81.5%, 2 00 cycles), and the rate performance with alpha -Fe2O3 nanotube electrode (60%, 5 A a g-1). (2) by electrospinning of alpha -Fe2O3 nanotubes as the core, using the chemical bath deposition method simple, alpha -Fe2O3@MnO_2 core-shell heterostructure materials with different MnO_2 content were synthesized. Compared with electrode MnO_2 nano structure based on the composite material, especially FM10020 (the content of MnO_2 is 60.1 wt%), with large specific capacitance (289.9 F g-1,1.0 A g-1), better rate performance (40.8% A, 5 g-1) and high cycle stability (85.3%, 1200 cycles) of.3. modified carbon fiber based electrode materials. The composite electrode material two MOs, due to the low conductivity and electrochemical dissolution, the capacitance performance is not ideal to a great extent. Another possible way to improve the performance of MOs electrode material is the composite conductive matrix. Electrospun carbon nanofibers (CNFs) in addition to Has the inherent advantages of carbon material, its machinability, tunable pore structure, is considered to be good. The introduction of conductive supporting substrate metal salt in the polymer precursor spinning solution, can effectively improve the degree of graphitization of the CNFs matrix, and the resulting porous structure, so as to obtain C-MOx composite nano fiber modification. We mainly use C-MOx as a support matrix, by modifying the surface of nitrogen containing carbon or coated with MnO_2 shells, to enhance the electrochemical performance of composite electrode material system. (1) by electrospinning, polymerization and calcination technology of chemical gas phase, C-Co porous Ox-C composite nano fiber surface nitrogen was prepared. The with high carbon content and larger Co Ox C-Co particles, the specific capacitance of the Ox-C electrode is not ideal; however, compared with C-Co Ox, C-Co Ox-C containing nitrogen and carbon layer of good conductivity and special protection mechanism of the rate capability and cycle stability Qualitatively higher. (2) by electrospinning C-MOx (M=Mn, Cu, Co) composite nanofibers as substrate and deposited on the surface of the MnO_2 layer, to obtain a series of one-dimensional C-MOx@MnO_2 core-shell heterostructure. By increasing the degree of graphitization of carbon fiber substrate or mixed metal Cu, effectively improve the electrical conductivity, C-MOx@ and MnO_2 C-MOx, not only can be used as active materials in the nuclear charge storage process, can be used as a conductive matrix to make full use of MnO_2 shell, and the introduction of a synergistic effect. Compared with the electrode of CNFs@MnO_2 core-shell structure based on C-MOx@MnO_2 electrode exhibits high specific capacitance and good cycle stability and rate capability. These results will provide a way to choose to further enhance the capacitance performance of carbon fiber or metal oxide based electrode materials.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM53;O646
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳新麗;李偉善;;超級(jí)電容器電極材料的研究現(xiàn)狀與發(fā)展[J];廣東化工;2006年07期
2 許開卿;吳季懷;范樂慶;冷晴;鐘欣;蘭章;黃妙良;林建明;;水凝膠聚合物電解質(zhì)超級(jí)電容器研究進(jìn)展[J];材料導(dǎo)報(bào);2011年15期
3 梓文;;超高能超級(jí)電容器[J];兵器材料科學(xué)與工程;2013年04期
4 ;歐盟創(chuàng)新型大功率超級(jí)電容器問世[J];功能材料信息;2014年01期
5 周霞芳;;無污染 充電快 春節(jié)后有望面市 周國泰院士解密“超級(jí)電容器”[J];環(huán)境與生活;2012年01期
6 江奇,瞿美臻,張伯蘭,于作龍;電化學(xué)超級(jí)電容器電極材料的研究進(jìn)展[J];無機(jī)材料學(xué)報(bào);2002年04期
7 朱修鋒,王君,景曉燕,張密林;超級(jí)電容器電極材料[J];化工新型材料;2002年04期
8 景茂祥,沈湘黔,沈裕軍,鄧春明,翟海軍;超級(jí)電容器氧化物電極材料的研究進(jìn)展[J];礦冶工程;2003年02期
9 朱磊,吳伯榮,陳暉,劉明義,簡旭宇,李志強(qiáng);超級(jí)電容器研究及其應(yīng)用[J];稀有金屬;2003年03期
10 賀福;碳(炭)材料與超級(jí)電容器[J];高科技纖維與應(yīng)用;2005年03期
相關(guān)會(huì)議論文 前10條
1 馬衍偉;張熊;余鵬;陳堯;;新型超級(jí)電容器納米電極材料的研究[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
2 張易寧;何騰云;;超級(jí)電容器電極材料的最新研究進(jìn)展[A];第二十八屆全國化學(xué)與物理電源學(xué)術(shù)年會(huì)論文集[C];2009年
3 鐘輝;曾慶聰;吳丁財(cái);符若文;;聚苯乙烯基層次孔碳的活化及其在超級(jí)電容器中的應(yīng)用[A];中國化學(xué)會(huì)第15屆反應(yīng)性高分子學(xué)術(shù)討論會(huì)論文摘要預(yù)印集[C];2010年
4 趙家昌;賴春艷;戴揚(yáng);解晶瑩;;扣式超級(jí)電容器組的研制[A];第十二屆中國固態(tài)離子學(xué)學(xué)術(shù)會(huì)議論文集[C];2004年
5 單既成;陳維英;;超級(jí)電容器與通信備用電源[A];通信電源新技術(shù)論壇——2008通信電源學(xué)術(shù)研討會(huì)論文集[C];2008年
6 王燕;吳英鵬;黃毅;馬延風(fēng);陳永勝;;單層石墨用作超級(jí)電容器的研究[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
7 趙健偉;倪文彬;王登超;黃忠杰;;超級(jí)電容器電極材料的設(shè)計(jì)、制備及性質(zhì)研究[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場摘要集[C];2010年
8 張琦;鄭明森;董全峰;田昭武;;基于薄液層反應(yīng)的新型超級(jí)電容器——多孔碳電極材料的影響[A];中國化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第10分會(huì)場摘要集[C];2010年
9 馬衍偉;;新型超級(jí)電容器石墨烯電極材料的研究[A];第七屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第7分冊(cè))[C];2010年
10 劉不厭;彭喬;孫s,
本文編號(hào):1446622
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1446622.html