耐堿性纖維素酶的表達(dá)及其對(duì)紙漿改性和機(jī)制研究
本文關(guān)鍵詞:耐堿性纖維素酶的表達(dá)及其對(duì)紙漿改性和機(jī)制研究 出處:《山東大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 耐堿性纖維素酶 耐堿性木聚糖酶 共表達(dá) 紙漿 酶法改性 機(jī)制
【摘要】:由于草漿等紙漿存在濾水性差、強(qiáng)度低等缺點(diǎn),使其應(yīng)用受到限制,一般生產(chǎn)過程中需要對(duì)其進(jìn)行改性以改善濾水和強(qiáng)度性能。與化學(xué)法改性相比,采用纖維素酶(主要是內(nèi)切酶EG)處理對(duì)紙漿改性是一種環(huán)境友好的技術(shù),且已被證明在改善紙漿濾水性,提高成紙強(qiáng)度等方面具有良好效果。由于制漿造紙工藝往往在中、堿性條件下進(jìn)行,這就要求使用的酶能夠在高pH條件下維持酶活性,保證其催化作用有效進(jìn)行。但市場(chǎng)上已有的商品纖維素酶大多為酸性酶,在堿性條件下酶活很低。雖然國內(nèi)外對(duì)堿性纖維素酶的研究正逐漸深入,但目前仍存在很多問題,例如,已有產(chǎn)堿性纖維素酶菌株的產(chǎn)量低、酶系不合理、酶改性機(jī)理尚未完全清楚等。因此,設(shè)法提高堿性纖維素酶產(chǎn)量,合理優(yōu)化酶系,以降低纖維素酶生產(chǎn)成本和提高對(duì)紙漿的改性效果,同時(shí)深入研究酶法改性機(jī)制等,對(duì)促進(jìn)酶在造紙工業(yè)中的應(yīng)用,降低生產(chǎn)成本等具有重要意義;谝陨媳尘,本論文在實(shí)驗(yàn)室前期研究基礎(chǔ)上,通過構(gòu)建耐堿性纖維素酶菌株,以希望提高纖維素酶產(chǎn)量;同時(shí)通過構(gòu)建耐堿性纖維素酶與木聚糖酶共表達(dá)菌株,以達(dá)到優(yōu)化改性酶系、提高酶法改性效果的目的;同時(shí)從不同角度研究了紙漿酶法改性的機(jī)制。本論文主要研究?jī)?nèi)容和結(jié)果如下:1.耐堿性纖維素酶的表達(dá)及其對(duì)紙漿改性效果研究為獲得適合紙漿改性用的耐堿性纖維素酶,在實(shí)驗(yàn)室前期研究基礎(chǔ)上,擴(kuò)增來源于特異腐質(zhì)霉的三個(gè)耐堿性內(nèi)切纖維素酶H.EGⅠ,H.EGⅡ,H.EGⅤ的基因,并在畢赤酵母GS115中成功異源表達(dá);同時(shí)在大腸桿菌BL21中成功異源表達(dá)了來源于不同芽孢桿菌的三個(gè)內(nèi)切纖維素酶Y106-EG,z-16-EG及A30-EG。測(cè)定純化后重組耐堿性纖維素酶的性質(zhì),發(fā)現(xiàn)這六種內(nèi)切纖維素酶的最適pH在6.5-7.5左右,最適溫度在50℃-60℃之間,各酶在pH 6.0-8.0條件下放置1h能夠維持60%以上酶活性,其中Y106-EG、z-16-EG和H.EGV在pH 9.0條件下放置1 h可以維持60%以上酶活性。將六種耐堿性內(nèi)切酶應(yīng)用于麥草漿改性,發(fā)現(xiàn)Y106-EG在酶用量?jī)H為0.2 IU/g條件下,與對(duì)照相比,能夠降低12.5%的打漿度,抗張強(qiáng)度指數(shù),耐破指數(shù),撕裂指數(shù)分別提升14.6%、14.3%和10.7%。對(duì)紙漿的改性效果明顯優(yōu)于其它五種耐堿性內(nèi)切葡聚糖酶,顯示出良好的潛在應(yīng)用前景。2.重組菌Y106OE-EG粗酶液對(duì)不同紙漿改性時(shí)的酶處理?xiàng)l件優(yōu)化及與其它酶的協(xié)同作用研究為提高耐堿性纖維素酶Y106-EG的產(chǎn)量,利用基因工程方法,實(shí)現(xiàn)Y106-eg基因的同源過表達(dá),經(jīng)實(shí)驗(yàn)室前期優(yōu)化的發(fā)酵培養(yǎng)基發(fā)酵,所得發(fā)酵液的CMCase酶活達(dá)到8.45 IU/ml,是出發(fā)菌株的8.28倍。利用工程菌Y106OE-EG粗酶液對(duì)楊木CMP(楊木化學(xué)機(jī)械漿),松木CMP(松木化學(xué)機(jī)械漿),麥草CP(麥草化學(xué)漿)進(jìn)行改性研究發(fā)現(xiàn),改性效果依次為麥草CP楊木CMP松木CMP。對(duì)酶法改性時(shí)的酶處理?xiàng)l件(處理溫度、時(shí)間和pH等)進(jìn)行了優(yōu)化,發(fā)現(xiàn)當(dāng)酶用量?jī)H為0.2 IU/g漿,pH 7.0,溫度55 ℃條件下對(duì)麥草漿處理2 h,與未用酶處理的對(duì)照相比,紙漿的抗張指數(shù),耐破指數(shù),撕裂指數(shù)分別增加了15.4%、16.9%和 11.8%。研究了工程菌Y106OE-EG粗酶液與其它酶的協(xié)同改性效果,發(fā)現(xiàn)Y106OE-EG的內(nèi)切纖維素酶與纖維素膨脹因子SWO4的聯(lián)合處理,與單獨(dú)使用內(nèi)切酶或SWO4相比,反而降低了紙漿的強(qiáng)度和纖維素結(jié)晶度,而當(dāng)與β-葡萄糖苷酶(1.2 IU/g)或木聚糖酶(5IU/g)聯(lián)合處理時(shí),對(duì)紙漿的強(qiáng)度性質(zhì)(抗張指數(shù),撕裂指數(shù),耐破指數(shù))均有明顯改善,在溫度55 ℃C、pH 7.0條件下處理2 h,當(dāng)Y106OE-EG粗酶液用量為0.2IU/g,也β-葡萄糖苷酶1.2IU/g時(shí),與對(duì)照相比,麥草漿的抗張指數(shù)、撕裂指數(shù)、耐破指數(shù)分別提升23.68%、34.10%、20.82%。當(dāng)木聚糖酶加量為5 IU/g時(shí),與對(duì)照相比,麥草漿的抗張指數(shù)、撕裂指數(shù)、耐破指數(shù)分別提升32.65%、42.44%、25.00%。此外,木聚糖酶與SWO4或木糖苷酶的聯(lián)合處理,對(duì)麥草漿的改性也具有良好的協(xié)同作用效果。綜合而言,Y106OE-EG生產(chǎn)的內(nèi)切纖維素酶與短小芽孢桿菌生產(chǎn)的木聚糖酶Xyn30的協(xié)同處理對(duì)紙漿的改性效果最佳,為后續(xù)的共表達(dá)菌株構(gòu)建提供了理論依據(jù)。3.產(chǎn)耐堿性纖維素酶與木聚糖酶共表達(dá)菌株構(gòu)建及產(chǎn)酶條件優(yōu)化為實(shí)現(xiàn)耐堿性纖維素酶(Y106-EG)及木聚糖酶(Xyn30)在Y106-WT中的共表達(dá),采用順反子共表達(dá),融合酶表達(dá),串聯(lián)共表達(dá)三種方式,意在提高枯草芽孢桿菌Y106-WT的產(chǎn)酶能力,結(jié)果表明,以串聯(lián)共表達(dá)的方式能夠?qū)崿F(xiàn)兩酶的共表達(dá),對(duì)構(gòu)建的共表達(dá)工程菌Y106OE-EG-Xyl進(jìn)行液體發(fā)酵,發(fā)現(xiàn)該菌株在培養(yǎng)56 h后,CMCase酶活可達(dá)最高(8.20 IU/ml),木聚糖酶在菌株培養(yǎng)64 h時(shí)酶活達(dá)到最高(60.40 IU/ml),分析該菌株產(chǎn)粗酶液的酶系發(fā)現(xiàn),其濾紙酶活(0.12IU/ml),外切纖維素酶活性(0.02IU/ml),β-葡萄糖苷酶(未測(cè)到)均較低,說明對(duì)應(yīng)用于紙漿改性而言,共表達(dá)菌所產(chǎn)纖維素酶的酶系比較合理,在對(duì)紙漿進(jìn)行改性的同時(shí)不損害紙漿纖維。利用工程菌Y106OE-EG-Xyl粗酶液在最佳處理pH 7.0,最佳處理溫度55 ℃C,漿濃度10%(w/v)條件下處理麥草化學(xué)漿2 h,當(dāng)酶用量為纖維素酶0.2 IU/g木聚糖酶活1.5IU/g時(shí),與對(duì)照及單獨(dú)添加纖維素酶(0.2IU/g)及木聚糖酶(1.5 IU/g)相比,紙漿白度和強(qiáng)度性能都有改善,其中與不加酶的對(duì)照漿處理相比,紙漿白度增加2.0%ISO,抗張指數(shù)、耐破指數(shù)、撕裂指數(shù)分別增加8.7%、16.6%和9.3%,而打漿度降低了 15%。利用混料設(shè)計(jì)優(yōu)化了工程菌Y106OE-EG-Xyl發(fā)酵時(shí)培養(yǎng)基中的碳源及誘導(dǎo)劑比例,發(fā)現(xiàn)當(dāng)麩皮,玉米芯,乳糖配比為3.33%、0.83%、0.83%時(shí),液體發(fā)酵72 h,纖維素酶活可達(dá)7.9 IU/ml,木聚糖酶活可達(dá)74.5 IU/ml,木聚糖酶活比優(yōu)化前提升了 14.1個(gè)酶活單位,且木聚糖酶與內(nèi)切纖維素酶的比由原來的7.5提升至 9.4。4.紙漿的酶法改性機(jī)制研究通過對(duì)Y106OE-EG粗酶液處理前后纖維質(zhì)量變化,纖維結(jié)晶度(XRD)及紅外光譜(FITR-ATR)等的變化分析發(fā)現(xiàn),經(jīng)重組菌Y106OE-EG粗酶液處理后,楊木CMP和麥草CP的纖維質(zhì)量得到明顯改善,且改善效果好于松木CMP。Y106OE-EG粗酶液處理后,楊木CMP及麥草化學(xué)漿的結(jié)晶度與對(duì)照相比明顯提高,但松木CMP結(jié)晶度則提高不明顯,三種漿經(jīng)酶處理后紙漿中的氫鍵強(qiáng)度均有所提升。分別提取了麥草CP、松木CMP和楊木CMP中的木質(zhì)素組分,研究了木質(zhì)素對(duì)Y106OE-EG的酶蛋白吸附特征,發(fā)現(xiàn)松木CMP和楊木CMP的木質(zhì)素對(duì)纖維素酶蛋白的吸附能力明顯高于麥草漿中的木質(zhì)素,木質(zhì)素對(duì)蛋白的不可逆吸附將影響酶對(duì)纖維底物的作用,因此相對(duì)而言,Y106OE-EG酶液更適合用于麥草漿的改性。分別利用Y106OE-EG和Y106OE-Xyl及共表達(dá)菌株Y106OE-EG-Xyl的粗酶液(EG 0.2 IU/g、Xylanase 1.5 IU/g、EG 0.2 IU/g-Xylanase 1.5 IU/g)處理紙漿,發(fā)現(xiàn)與對(duì)照或只添加EG或木聚糖酶的樣品相比,共表達(dá)菌株的粗酶液處理后紙漿纖維的平均長(zhǎng)度增加,寬度幾乎不變,長(zhǎng)寬比變大,細(xì)小纖維含量減少,卷曲指數(shù)及扭結(jié)指數(shù)均有所降低,且共表達(dá)菌株的粗酶液處理效果優(yōu)于單獨(dú)酶的處理效果。利用紅外譜圖對(duì)共表達(dá)菌株Y106OE-EG-Xyl粗酶液處理前后草漿的吸收峰相對(duì)強(qiáng)度進(jìn)行分析,發(fā)現(xiàn)經(jīng)共表達(dá)菌株粗酶液處理后,氫鍵強(qiáng)度明顯提升。利用SEM觀察了重組菌Y106OE-EG及共表達(dá)菌株Y106OE-EG-Xyl的粗酶液處理前后草漿纖維表面形態(tài)變化,發(fā)現(xiàn)經(jīng)兩菌株的粗酶液處理后,與對(duì)照相比,紙漿中的細(xì)小纖維含量明顯減少,纖維變得平整。酶處理后紙漿在纖維質(zhì)量、纖維素結(jié)晶度、氫鍵強(qiáng)度、表面形態(tài)等方面發(fā)生的上述變化,是酶處理改善紙漿強(qiáng)度和濾水性能的內(nèi)在原因。分別從酶的結(jié)構(gòu)和性質(zhì)、蛋白表面電荷、蛋白的疏水性、蛋白在紙漿纖維上的吸附等角度,探討了 Y106-EG所產(chǎn)粗酶液與來源于特異腐質(zhì)霉的三個(gè)耐堿性內(nèi)切纖維素酶H.EGⅠ、H.EGⅡ和H.EGⅤ以及來源于其它芽孢桿菌的兩個(gè)耐堿性內(nèi)切纖維素酶z-16-EG和A30-EG對(duì)麥草漿的改性差異及內(nèi)在原因。研究發(fā)現(xiàn),與其它五種耐堿性內(nèi)切纖維素酶相比,Y106-EG由于酶蛋白對(duì)底物的親和力相對(duì)較大,且在pH 7.0時(shí),pH值低于其自身等電點(diǎn)使其氨基酸易被帶上正電荷,另外,蛋白表面的Zeta電位與其它幾種耐堿性內(nèi)切酶相比負(fù)值較小,且蛋白的疏水性小,這些都使得Y106-EG酶蛋白更易于與帶負(fù)電荷的細(xì)小纖維發(fā)生親水性結(jié)合,從而有利于酶降解細(xì)小纖維。此外,Y106-EG酶蛋白是典型的(β/α)8桶狀結(jié)構(gòu)特征,結(jié)構(gòu)穩(wěn)定性較好且開口寬闊的活性中心使其可以容納更多類型不同的多糖支鏈,在催化降解復(fù)雜底物時(shí)有較大優(yōu)勢(shì),該酶的CBM屬于A型CBM,易于結(jié)合于結(jié)晶型纖維素多糖上。這些特征使得Y106-EG在用于紙漿改性時(shí)表現(xiàn)出較好的優(yōu)勢(shì)。
[Abstract]:The straw etc. pulp drainability are poor, low intensity, so its application is limited, need to be modified to improve the drainage and strength properties of the general production process. Compared with chemical modification, cellulase (mainly enzyme EG) treatment on pulp modification is an environmental friendly the technology, and has been shown to improve pulp drainability, has good effect to improve paper strength and so on. Because of the pulping and papermaking process often in alkaline conditions, this requires the use of enzymes to maintain the enzyme activity in the condition of high pH, effectively guaranteeing the catalytic effect. But already on the market the goods are mostly acidic cellulase enzyme, in alkaline conditions, enzyme activity is very low. Although the domestic and foreign research on alkaline cellulase is deepening, but there are still many problems, for example, has a strain producing alkaline cellulase yield Low enzyme system is not reasonable, enzyme modification mechanism has not been fully understood. Therefore, to improve the yield of alkaline cellulase, optimizing cellulase enzyme system, to reduce production cost and improve the effect of modification of pulp, and studies on enzymatic modification mechanism, to promote the application of enzyme in papermaking industry, has important to reduce the production cost. Based on the above background, this paper based on the previous research in the laboratory, through the construction of alkaline cellulase strains, in the hope of improving yield of cellulase; at the same time through the construction of alkaline cellulase and xylanase co expression strain, to achieve the optimization of modified enzyme system, improve the effect of modified enzyme method; at the same time from different angles on the pulp enzymatic modification mechanism. The main research contents and results are as follows: 1. the expression of cellulase and alkali resistance of pulp modification effect for research For the pulp for modification of alkaline cellulase in the laboratory, based on the previous research of amplification from humicola insolens three alkaline endoglucanase H.EG I and H.EG II, H.EG V gene and heterologous expression in Pichia pastoris GS115; at the same time, the success of three endoglucanase Y106-EG heterologous expression. Different from Bacillus subtilis in Escherichia coli BL21, properties of z-16-EG and A30-EG. determination of purified recombinant alkaline cellulase, found that the optimum pH is about 6.5-7.5 in the six kinds of endoglucanase optimum temperature between 50, -60 DEG C, the enzyme 1h in pH placed under the condition of 6.0-8.0 can maintain more than 60% of the enzyme activity among them, Y106-EG, z-16-EG and H.EGV under the condition of pH 9 for 1 h can maintain more than 60% enzymes. Six kinds of alkali resistance enzymes used in wheat straw modified, Y106-EG found in the amount of enzyme is only 0.2 IU/g Under the condition, compared with the control, can reduce 12.5% of the beating degree, tensile index, burst index and tear index were increased by 14.6%, significantly higher than the other five kinds of alkaline endoglucanase 14.3% and 10.7%. of the pulp, showing good potential application prospect in recombinant.2. enzyme on Y106OE-EG optimization of enzyme treatment of different pulp modification and other enzymes to improve the synergistic effect of alkali cellulase Y106-EG production by genetic engineering method, the homology of Y106-eg gene overexpression, by fermentation laboratory optimization of fermentation medium, the enzyme activity reached 8.45 IU/ml CMCase fermentation liquor, is 8.28 times the starting strain. The engineering strain Y106OE-EG crude enzyme of poplar CMP (Yang Mu chemical mechanical pulp), CMP pine (pine chemical mechanical pulp (CP) of wheat straw, wheat straw chemical pulp) was modified to study found that modification effect The fruit followed by wheat straw CP poplar CMP pine CMP. on enzymatic modification of enzyme treatment conditions (temperature, time and pH) were optimized, when the enzyme dosage is 0.2 IU/g pulp, pH 7, temperature 55 degrees under the condition of wheat straw treatment for 2 h, compared with the control without enzyme the pulp tensile index, burst index and tear index were increased by 15.4%, 16.9% and 11.8%. to study the effect of modified engineering strain Y106OE-EG crude enzyme solution with other enzymes, it is found that the combined treatment with endo cellulase cellulose Y106OE-EG expansion factor SWO4, compared with the single use enzyme or SWO4, but reduce the strength and crystallinity of cellulose pulp, while beta glucosidase and glucose oxidase (1.2 IU/g) or xylanase (5IU/g) combined treatment, the strength properties of the pulp (tensile index, tear index, burst index) were significantly improved, at a temperature of 55 DEG C, pH 7 Under 2 h, when the Y106OE-EG crude enzyme dosage is 0.2IU/g, or beta glucosidase 1.2IU/g when compared with the control, the tensile index, tear index of wheat straw pulp, bursting index were increased by 23.68%, 34.10%, 20.82%. when xylanase dosage was 5 IU/g, compared with the control, anti the tensile index, tear index of wheat straw pulp, bursting index were increased by 32.65%, 42.44%, 25.00%. in the combined treatment of xylanase and xylosidase or SWO4, modification of wheat straw has good synergistic effect. In general, the production of Y106OE-EG fiber endo cellulase and Bacillus pumilus production xylanase Xyn30 co processing is the best modifier of pulp for strain construction provides a theoretical basis for.3. producing alkaline cellulase and xylanase expression strain construction and optimization of fermentation conditions for alkaline cellulase co expression of follow-up (Y106- EG) and xylanase (Xyn30) were expressed in Y106-WT, the cistron expression, fusion enzyme expression, series co expression in three ways, in order to improve the enzyme producing ability of Bacillus subtilis Y106-WT results show that co expression in series co expression way to achieve the two enzyme, liquid fermentation on the establishment of co expression engineering bacteria Y106OE-EG-Xyl, found that the strain in the culture after 56 h, CMCase activity was the highest (8.20 IU/ml), xylanase strain was cultured in enzyme activity reached the maximum of 64 H (60.40 IU/ml), found that the enzyme production of the strain analysis of crude enzyme, the filter paper activity (0.12IU/ml), cellobiohydrolase activity (0.02IU/ml), beta glucosidase (not detected) were low, indicating the corresponding modification for pulp, co expression of enzymes of bacteria producing cellulase is reasonable, in the pulp modified with no damage to the pulp fiber. By using engineering bacteria Y106 OE-EG-Xyl crude enzyme solution in the optimal treatment of pH 7, the optimum processing temperature is 55 DEG C, plasma concentration of 10% (w/v) under the condition of wheat straw chemical pulp processing 2 h, when the dosage of enzyme was 0.2 IU/g cellulase and xylanase activity of 1.5IU/g, and the control and the addition of cellulase and xylanase (0.2IU/g) (1.5 IU/g) compared have, improve pulp brightness and strength properties of the pulp, compared with the control treatment without enzyme, the whiteness of pulp increased 2.0%ISO, tensile index, burst index and tear index were increased by 8.7%, 16.6% and 9.3%, and the beating degree is reduced by using 15%. mixture design optimization of engineering bacteria Y106OE-EG-Xyl fermentation the medium carbon source and inducer ratio, when the wheat bran, corn cob, lactose ratio was 3.33%, 0.83%, 0.83%, 72 h liquid fermentation, cellulase activity was 7.9 IU/ml, the xylanase activity was up to 74.5 IU/ml, the activity of xylanase than before optimization improved 14.1 enzyme activity Unit, and xylanase and CMCase by enzyme method than the original 7.5 to 9.4.4. pulp modification mechanism through the study on the change of fiber quality of Y106OE-EG before and after enzyme treatment, the crystallinity of the fiber (XRD) and infrared spectroscopy (FITR-ATR) and other changes after analysis found that recombinant Y106OE-EG enzyme treatment after the fiber quality of poplar CMP and wheat straw CP was obviously improved, and the improvement effect is better than the pine CMP.Y106OE-EG crude enzyme solution after crystallization of poplar CMP and wheat straw pulp were significantly increased compared with the degree of crystallinity of CMP, but the pine increase is not obvious, three kinds of pulp by hydrogen bond strength were enzyme treatment after the upgrade. In the pulp were extracted from wheat straw CP, CMP and CMP in pine poplar lignin fractions, of lignin on Y106OE-EG enzyme protein adsorption characteristics, found that pine CMP and poplar CMP lignin on cellulase protein The adsorption capacity was significantly higher than that of wheat straw pulp lignin, lignin on protein irreversible adsorption will affect the effect of enzyme on fiber substrates, so relatively speaking, Y106OE-EG is more suitable for wheat straw pulp enzyme modification. Y106OE-EG enzyme and Y106OE-Xyl and co expression strain Y106OE-EG-Xyl (EG 0.2 IU/g, respectively, by Xylanase 1.5 IU/g, EG 0.2 IU/g-Xylanase 1.5 IU/g) treatment of pulp, we found that compared with the control or only adding EG or xylanase samples, the average length of total crude enzyme strains after the expression of pulp fibers increased, the width is almost unchanged, the ratio of length to width becomes larger, reduce the fines content, curl index and kink index decreased, and co expression of treatment effect of crude enzyme treatment effect is better than that of the strains. The infrared spectra of co expression strain Y106OE-EG-Xyl crude enzyme solution before and after the treatment of straw pulp and the absorption peak is relatively strong The degree of analysis, found by co expression strain of crude enzyme treatment, hydrogen bond strength significantly improved. Using SEM surface morphology changes were observed before and after the straw fiber and co expression of recombinant Y106OE-EG strain Y106OE-EG-Xyl crude enzyme treatment, found that the crude enzyme treatment of strain two, compared with the control, the content of fine fiber pulp the fiber becomes smooth. Significantly reduced after enzyme treatment in pulp fiber quality, cellulose crystallinity, hydrogen bond strength, the change of surface morphology occurred, is the inherent reason of enzyme treatment improve the pulp strength and drainage performance. From the structure and properties of the enzyme, protein surface charge, hydrophobic protein, protein in the pulp fiber adsorption angle, discusses the Y106-EG production and the crude enzyme from humicola insolens three alkaline endoglucanase H.EG 1, H.EG 2 and H.EG V and from the other The two Bacillus alkaline endoglucanase z-16-EG and A30-EG on wheat straw pulp modified difference and internal reasons. The study found that, compared with other five kinds of alkaline endoglucanase, Y106-EG as affinity enzyme protein of substrate is relatively large, and in pH 7, pH value is lower than the isoelectric point of the amino acid easy to be with a positive charge, in addition, Zeta protein negative surface potential is lower compared with other several alkali resistant enzymes, and protein hydrophobicity, which makes Y106-EG protein more easily and negatively charged fine fiber hydrophilic combination, which is beneficial to the enzymatic degradation of fine fiber. In addition, Y106-EG protein is a typical (alpha / beta) 8 barrel structure characteristics, good structure stability and wide opening activity center which can accommodate more different types of branched polysaccharides, in catalytic degradation of complex substrate is bigger The advantage of this enzyme, CBM belongs to A CBM, easy binding to crystalline cellulose polysaccharides. These characteristics make Y106-EG used in pulp modification showed better advantage.
【學(xué)位授予單位】:山東大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TS727;Q55
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊葉東,韓yN君,張金龍;纖維素酶的研究、生產(chǎn)及其在紡織上的應(yīng)用[J];激光生物學(xué)報(bào);2000年02期
2 卜登攀;飼用纖維素酶及產(chǎn)酶微生物[J];寧夏農(nóng)學(xué)院學(xué)報(bào);2000年04期
3 傅力,丁友f ,張?bào)?纖維素酶測(cè)定方法的研究[J];新疆農(nóng)業(yè)大學(xué)學(xué)報(bào);2000年02期
4 周春暉;孫加龍;;纖維素酶及其應(yīng)用[J];中國商辦工業(yè);2002年02期
5 孟雷,陳冠軍,王怡,高培基;纖維素酶的多型性[J];纖維素科學(xué)與技術(shù);2002年02期
6 楊永彬,黃諺諺,林躍鑫;纖維素酶的結(jié)構(gòu)及分子多樣性[J];生命的化學(xué);2004年03期
7 農(nóng)向;伍紅;秦天鶯;向會(huì)耀;;纖維素酶的研究進(jìn)展[J];西南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年S1期
8 胡學(xué)智;酸性纖維素酶產(chǎn)酶活性達(dá)到新高[J];工業(yè)微生物;2005年01期
9 陳小堅(jiān);;纖維素酶的分子生物學(xué)研究及應(yīng)用進(jìn)展[J];湖北民族學(xué)院學(xué)報(bào)(醫(yī)學(xué)版);2006年04期
10 杜文娟;王家東;侯紅萍;;纖維素酶的制備及其應(yīng)用研究[J];釀酒;2007年03期
相關(guān)會(huì)議論文 前10條
1 呂東海;周巖民;李如治;;飼用纖維素酶及其應(yīng)用研究進(jìn)展[A];酶制劑在飼料工業(yè)中的應(yīng)用[C];2005年
2 陳清華;馮欽龍;周輝;;纖維素酶生產(chǎn)的研究進(jìn)展[A];酶制劑在飼料工業(yè)中的應(yīng)用[C];2005年
3 楊家華;郭志宏;;纖維素酶在反芻動(dòng)物生產(chǎn)上的應(yīng)用[A];中國奶牛協(xié)會(huì)2007年會(huì)論文集(上冊(cè))[C];2007年
4 曾濤;曾會(huì)才;陳漢清;;海南省部分纖維素酶高產(chǎn)菌株的分離與鑒定[A];2009年海南省微生物學(xué)檢測(cè)及質(zhì)量保證研討會(huì)論文集[C];2009年
5 王鳳超;陳冠軍;劉巍峰;;環(huán)境基因組文庫的構(gòu)建及纖維素酶基因的篩選[A];2008年中國微生物學(xué)會(huì)學(xué)術(shù)年會(huì)論文摘要集[C];2008年
6 王娟;李欣;吳松剛;黃建忠;;長(zhǎng)梗木霉外切纖維素酶基因的克隆及其表達(dá)[A];華東六省一市生物化學(xué)與分子生物學(xué)會(huì)2009年學(xué)術(shù)交流會(huì)論文摘要匯編[C];2009年
7 王驥;丁明;李燕紅;陳清西;許根俊;趙輔昆;;動(dòng)物內(nèi)源性纖維素酶:福壽螺(Ampullaria crossean)多功能纖維素酶基因的克隆[A];華東六省一市生物化學(xué)與分子生物學(xué)會(huì)2003年學(xué)術(shù)交流會(huì)論文摘要集[C];2003年
8 馮文英;;固體纖維素酶的浸漬條件優(yōu)化及其特性研究[A];中國造紙學(xué)報(bào)2003年增刊——中國造紙學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文集[C];2003年
9 趙輔昆;王驥;陳清西;許根俊;;纖維素酶的研究進(jìn)展[A];第七屆全國酶學(xué)學(xué)術(shù)討論會(huì)論文摘要集[C];2004年
10 姚強(qiáng);黃琰;陳冠軍;;產(chǎn)耐堿性纖維素酶絲狀真菌的篩選及研究[A];山東微生物學(xué)會(huì)第六次會(huì)員代表大會(huì)暨2004年學(xué)術(shù)年會(huì)論文集(上)[C];2004年
相關(guān)重要報(bào)紙文章 前10條
1 平遠(yuǎn) 譯;纖維素酶可提高秸稈飼料利用率[N];福建科技報(bào);2004年
2 河北農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院 孫洪新邋甄二英;纖維素酶在動(dòng)物營養(yǎng)中的應(yīng)用[N];中國畜牧獸醫(yī)報(bào);2008年
3 王菁莎 王頡 劉景彬;纖維素酶的應(yīng)用現(xiàn)狀[N];中國食品質(zhì)量報(bào);2009年
4 劉國信;開發(fā)纖維素酶制劑大有可為[N];經(jīng)理日?qǐng)?bào);2004年
5 陸慕寒 整理;35項(xiàng)印染行業(yè)節(jié)能減排先進(jìn)技術(shù)——助劑篇(二)[N];中國紡織報(bào);2008年
6 山東農(nóng)業(yè)大學(xué) 王紀(jì)亭;飼料原料資源匱乏出路何在[N];中國畜牧報(bào);2003年
7 ;2009年印染行業(yè)節(jié)能減排優(yōu)秀技術(shù)創(chuàng)新成果推介[N];中國紡織報(bào);2009年
8 馮衛(wèi)東;科技將這樣改變我們的生活[N];科技日?qǐng)?bào);2008年
9 ;高活力纖維素酶生產(chǎn)技術(shù) [N];中國化工報(bào);2002年
10 本報(bào)記者 李曉巖;生物煉制:突破纖維素利用瓶頸[N];中國化工報(bào);2007年
相關(guān)博士學(xué)位論文 前10條
1 張慶;瑞氏木霉纖維素酶降解模式及其功能多樣性研究[D];山東大學(xué);2015年
2 張聰;Cytophaga hutchinsoni纖維素酶系研究[D];山東大學(xué);2015年
3 韓超;嗜熱真菌新的熱穩(wěn)定纖維素酶的克隆、表達(dá)和功能研究[D];山東農(nóng)業(yè)大學(xué);2015年
4 呂新星;里氏木霉纖維素酶基因轉(zhuǎn)錄調(diào)控因子Xyr1功能研究及銅離子響應(yīng)高效表達(dá)體系的建立[D];山東大學(xué);2015年
5 郭紅;高固體系纖維素酶水解與回收強(qiáng)化研究[D];天津大學(xué);2015年
6 劉奎美;纖維素酶轉(zhuǎn)錄調(diào)控因子及纖維素酶應(yīng)用的研究[D];山東大學(xué);2016年
7 韓小龍;纖維素酶補(bǔ)料發(fā)酵工藝及木糖渣生產(chǎn)葡萄糖酸鈉的研究[D];山東大學(xué);2017年
8 王美美;耐堿性纖維素酶的表達(dá)及其對(duì)紙漿改性和機(jī)制研究[D];山東大學(xué);2017年
9 周峻沛;云斑天牛胃腸道內(nèi)共生細(xì)菌來源的纖維素酶和半纖維素酶的初步研究[D];中國農(nóng)業(yè)科學(xué)院;2010年
10 韋小敏;斜臥青霉胞外蛋白質(zhì)組學(xué)分析與纖維素酶合成調(diào)控機(jī)制研究[D];山東大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 耿月姍;纖維素酶在幾種咪唑類離子液體中活性研究[D];天津大學(xué);2009年
2 錢文佳;南極細(xì)菌產(chǎn)低溫纖維素酶的研究[D];哈爾濱工業(yè)大學(xué);2009年
3 舒勤;嗜堿性芽孢桿菌Bacillus sp.AC-2產(chǎn)纖維素酶的研究[D];浙江大學(xué);2004年
4 趙燕;高效纖維素酶高產(chǎn)菌的篩選及相關(guān)研究[D];武漢科技大學(xué);2013年
5 李娜;耐熱真菌纖維素酶基因的克隆與序列分析[D];山東農(nóng)業(yè)大學(xué);2013年
6 田海嬌;纖維素酶生產(chǎn)菌的篩選、誘變及產(chǎn)酶機(jī)制的初步研究[D];東北林業(yè)大學(xué);2015年
7 訾曉雪;不同底物誘導(dǎo)下樺剝管菌纖維素酶活和蛋白質(zhì)組學(xué)研究[D];東北林業(yè)大學(xué);2015年
8 譚玲;高效水解甘油有機(jī)溶劑預(yù)處理麥草纖維素酶制劑的選擇和復(fù)配[D];江南大學(xué);2015年
9 李靖一;pGAP調(diào)控下的內(nèi)切纖維素酶組成型表達(dá)及酶制劑的制備[D];河北農(nóng)業(yè)大學(xué);2015年
10 王帥;纖維素酶活性架構(gòu)及TrCel12A關(guān)鍵亞位點(diǎn)氨基酸功能研究[D];山東大學(xué);2015年
,本文編號(hào):1400459
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1400459.html