天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程博士論文 >

環(huán)境友好大豆蛋白質(zhì)材料改性研究

發(fā)布時(shí)間:2018-01-09 07:07

  本文關(guān)鍵詞:環(huán)境友好大豆蛋白質(zhì)材料改性研究 出處:《北京化工大學(xué)》2015年博士論文 論文類(lèi)型:學(xué)位論文


  更多相關(guān)文章: 大豆蛋白質(zhì) 生物降解材料 聚乙烯醇 納米復(fù)合 增強(qiáng) 共混 相容性


【摘要】:由于環(huán)境污染的加劇及石油基資源的日益短缺,基于可再生資源的生物材料日益受到重視。大豆蛋白質(zhì)是豆油產(chǎn)業(yè)的副產(chǎn)物,是一種來(lái)源豐富的可再生植物資源,也是一類(lèi)添加增塑劑后可熱塑成型的天然高分子材料。然而,單獨(dú)由大豆蛋白質(zhì)制備的塑料硬且脆,加入小分子增塑劑后,大豆蛋白質(zhì)熱塑性改善,柔韌性增加,但力學(xué)強(qiáng)度較低且對(duì)水敏感,限制了其發(fā)展和應(yīng)用。本論文以大豆分離蛋白質(zhì)(SPI)為主要原料,通過(guò)與其他生物可降解材料的共混,以及與納米粒子的復(fù)合來(lái)得到廉價(jià)、加工性良好且力學(xué)及防水性能改善的大豆蛋白質(zhì)環(huán)境友好材料。在表征材料的結(jié)構(gòu)、性能以及評(píng)價(jià)材料應(yīng)用前景的同時(shí),探討材料結(jié)構(gòu)與性能之間的關(guān)系。本論文的創(chuàng)新之處在于:(1)制備了鄰苯二甲酸酐改性的大豆蛋白質(zhì)(PAS)并用其來(lái)增強(qiáng)甘油增塑的大豆蛋白質(zhì),在不添加任何增容劑的情況下得到了兩相相容性良好、性能改善的大豆蛋白質(zhì)復(fù)合材料,探討填料、基體相似的化學(xué)結(jié)構(gòu)與相容性之間的關(guān)系;(2)將碳納米管進(jìn)行酸改性后與大豆蛋白質(zhì)復(fù)合,得到分散性良好、增強(qiáng)效果明顯的納米復(fù)合材料,研究酸改性后納米管表面極性的變化對(duì)其在基體中的分散以及與基體相容性的影響;(3)在無(wú)增塑劑添加的情況下,通過(guò)熔融共混制備了全生物降解的SPI/聚己二酸/對(duì)苯二甲酸丁二酯(PBAT)共混材料,該共混材料在高蛋白質(zhì)填充量的情況下仍具有較好的韌性和強(qiáng)度;(4)首次通過(guò)熔融法制備了SPI/聚乙烯醇(PVA)共混膜材料,制備過(guò)程簡(jiǎn)單、綠色且產(chǎn)品性能優(yōu)良;為了進(jìn)一步改善共混材料的力學(xué)性能,繼而在SPI/PVA材料中引入層狀硅酸鹽蒙脫土(MMT),利用SPI/PVA與MMT三者間強(qiáng)的氫鍵作用制備剝離型或插層型納米復(fù)合材料,所得材料強(qiáng)度、熱穩(wěn)定性、防水性提高。本論文的主要內(nèi)容和結(jié)論包括如下幾個(gè)方面:(1)通過(guò)化學(xué)改性制備了N-鄰苯二甲;蠖沟鞍踪|(zhì)(PAS),并用它與甘油增塑的大豆分離蛋白質(zhì)(GPS)復(fù)合得到PAS/GPS復(fù)合材料。由于極性基團(tuán)的減少以及苯環(huán)的空間位阻,在與甘油混合時(shí),PAS已失去熱塑性,因而,在復(fù)合材料中可發(fā)揮增強(qiáng)填料的作用。由于PAS與GPS基體間有相似的化學(xué)結(jié)構(gòu),因此兩相表現(xiàn)出良好的相容性,所得復(fù)合材料透光性較強(qiáng)且力學(xué)性能明顯改善。隨著填料含量的增加,復(fù)合材料強(qiáng)度和模量顯著提高。由于PAS的疏水性以及填料-基體間強(qiáng)相互作用,也使復(fù)合材料的疏水性增加。PAS的熱穩(wěn)定性略低于SPI,因此整個(gè)復(fù)合材料的熱穩(wěn)定性略微降低。(2)通過(guò)酸處理制備改性多壁碳納米管(MWCNTs),并將其引入到甘油增塑的大豆蛋白質(zhì)中制備納米復(fù)合材料。酸處理可改善碳納米管的團(tuán)聚且在碳納米管表面引入極性基團(tuán)。經(jīng)酸改性處理后的碳納米管在蛋白質(zhì)基體中分散均勻,與基體相容性良好。碳納米管并未改變大豆蛋白質(zhì)原有結(jié)晶結(jié)構(gòu)。鑒于碳納米管與大豆蛋白質(zhì)基體之間的強(qiáng)氫鍵相互作用及在基體中的均勻分散,加入碳納米管后,復(fù)合材料的力學(xué)性能明顯改善,碳納米管在蛋白質(zhì)基體中表現(xiàn)出了明顯的增強(qiáng)效果。由于SPI和碳納米管之間強(qiáng)氫鍵相互作用阻礙了蛋白質(zhì)基體在高濕度環(huán)境下的溶脹,因此加入碳納米管后,復(fù)合材料的吸水率降低。此外,碳納米管還顯著提高了復(fù)合材料的熱穩(wěn)定性。(3)通過(guò)將SPI與PBAT熔融共混制備了一種新型生物降解塑料。共混材料的結(jié)構(gòu)為海島結(jié)構(gòu),并且依賴(lài)于SPI含量。SPI含量低時(shí)(9.1%)兩相相容性較好,含量進(jìn)一步增加會(huì)出現(xiàn)一定程度相分離。SPI和PBAT之間存在相互作用,SPI起到了增強(qiáng)效果,隨著SPI含量的增加,共混材料的儲(chǔ)能模量及玻璃化轉(zhuǎn)變溫度提高。共混材料的拉伸強(qiáng)度及斷裂伸長(zhǎng)率隨SPI含量的增加而降低,但在SPI含量高達(dá)28.6%時(shí)共混材料仍具有良好的韌性。大豆蛋白分子中含有大量的親水基團(tuán),表現(xiàn)出強(qiáng)的吸水性,導(dǎo)致SPI/PBAT材料吸水率的增加。隨SPI含量的增加,SPI/PBAT共混材料的熱穩(wěn)定性在200-400℃范圍內(nèi)降低,而在更高的溫度下熱穩(wěn)定性提高。共混膜具有良好的生物降解性能。在土壤中SPI比PBAT更易降解,因此,含SPI的共混材料比純PBAT降解快。(4)在水存在下用熔融法制備了甘油增塑的SPI/PVA共混膜。PVA的羥基和SPI的酰胺基形成新的氫鍵,氫鍵的生成增強(qiáng)了PVA相和SPI相的相互作用,提高了它們的相容性。SPI的存在沒(méi)有影響PVA的晶體結(jié)構(gòu),但使PVA的結(jié)晶和熔融溫度降低。雖然共混膜有一定程度的相分離,但SPI相能均勻的分散于PVA相中,兩相相容性較好,使所得共混材料具有優(yōu)異的力學(xué)性能,即使在高蛋白質(zhì)含量情況下共混材料仍具有很高的韌性。此外,SPI的加入使共混膜的熱穩(wěn)定性和氧氣阻隔性能都高于純PVA膜,但吸水率和水?dāng)U散系數(shù)增加,防水性減弱。(5)為了進(jìn)一步提高SPI/PVA薄膜的力學(xué)強(qiáng)度,采用熔融加工的方法,制備了SPI/PVA/MMT納米復(fù)合材料。復(fù)合材料的結(jié)構(gòu)依賴(lài)于MMT含量。當(dāng)MMT含量≤3.7%時(shí)形成剝離結(jié)構(gòu);MMT含量≥7.1%時(shí)形成插層結(jié)構(gòu)。硅酸鹽片層表面上的氧原子與蛋白質(zhì)肽鍵上的氫原子和PVA分子鏈羥基上的氫原子產(chǎn)生強(qiáng)氫鍵相互作用,有助于改善填料與基體之間的相容性。MMT納米片層可作為PVA的異相成核劑,加速PVA的結(jié)晶過(guò)程,并增大了其晶體尺寸分布。加工過(guò)程中,MMT可明顯改善熔體的黏度,因此,隨著MMT含量的增加,復(fù)合材料熔體黏度增加,剪切作用加強(qiáng),使蛋白質(zhì)相分散效果更好。MMT在基體中表現(xiàn)出明顯增強(qiáng)作用,隨著MMT含量的增加,復(fù)合材料的拉伸強(qiáng)度和楊氏模量增加,斷裂能先增大后減小,并在MMT含量7.1%時(shí)達(dá)到最大值。由于高度無(wú)序分散的MMT納米片層對(duì)基體鏈段的有效限制,復(fù)合材料的吸水率和水?dāng)U散系數(shù)降低,熱穩(wěn)定性升高。
[Abstract]:Because of the increasing shortage of environmental pollution and resource base oil, renewable resources of biological materials have been paid more and more attention. Based on soy protein is a by-product of soybean oil industry, is a rich source of renewable plant resources, is also a kind of plasticizer is added after thermoplastic forming natural polymer materials. However, prepared by the soybean protein for separate plastic hard and brittle, adding small molecular plasticizer, soybean protein thermoplastic improvement, increase flexibility, but the mechanical strength is low and sensitive to water, limited its development and application. In this paper, soy protein isolate (SPI) as the main raw material, by blending with other biodegradable materials the composite and nano particles and to obtain cheap, environmentally friendly materials for improving the processing of soybean protein and good mechanical and waterproof properties. In the characterization of materials, materials and performance evaluation Application prospect at the same time, to explore the relationship between the structure and properties of materials. The innovations of this paper are: (1) preparation of phthalic anhydride modified two of soybean protein (PAS) and use it to enhance the soybean protein plasticized with glycerin, without adding any compatibilizer under two-phase good compatibility, improve the performance of soybean protein composite materials, fillers, similar chemical structure matrix and the compatibility relation between; (2) the carbon nanotubes were modified with acid and soybean protein composite, good dispersion, enhanced nano composite effect obviously, acid modified nanotubes change the surface polarity of the dispersion and the influence of compatibility with matrix; (3) in the absence of plasticizer case, were prepared by melt blending biodegradable SPI/ poly adipic acid / benzene of two formic acid (Ding Erzhi PB AT) blends, the blends are filled with good toughness and strength in the case of high protein; (4) for the first time, SPI/ was prepared by melt blending polyvinyl alcohol (PVA) membrane materials, preparation process is simple, green and good performance of the product; in order to further improve the mechanical properties of blends, and then introduce layered silicate montmorillonite in SPI/PVA material (MMT), using SPI/PVA and MMT among the three strong hydrogen bonding preparation of exfoliated or intercalated nanocomposites, the material strength, thermal stability, water resistance is improved. The main contents and conclusions of this paper are as follows: (1) by chemical preparation of modified N- phthalate two formylation of soy protein (PAS), and use it with glycerol added to soy protein isolate plastic (GPS) composite PAS/GPS composite materials. Because of the polar groups to reduce benzene and steric hindrance, and in Glycerol mixed, PAS has lost the thermoplastic, therefore, can play a role in reinforcing fillers in composite materials. Because of the PAS and GPS substrate have similar chemical structure, so the two showed good compatibility, the light transmittance of the composite material is strong and the mechanical properties are obviously improved. With the increase of filler content, composite the material strength and modulus increased significantly. Due to the hydrophobicity of PAS filler matrix and the strong interaction between the hydrophobic, thermal stability of the composites increases.PAS slightly lower than SPI, so thermal stability of the composites decreased. (2) treated by acid preparation and modification of multi walled carbon nanotubes (MWCNTs), and preparation of nano composite materials for soybean protein into the glycerol plasticized. Acid treatment can improve the agglomeration of CNTs and the introduction of polar groups on the surface of carbon nanotubes. The acid modified carbon nanotubes in eggs Uniform dispersion of white matter in the matrix, good compatibility with matrix. Carbon nanotubes did not change the crystal structure of soybean protein. In view of the strong hydrogen bonds between carbon nanotubes and soybean protein matrix interactions in the matrix and uniform dispersion of carbon nanotubes, the mechanical properties of the composites improved significantly in protein matrix in carbon nanotubes the enhancement effect is obvious. The swelling between SPI and carbon nanotubes with strong hydrogen bonding interactions hinder the protein matrix in a high humidity environment, thus adding carbon nanotubes, composite water absorption rate decreased. In addition, carbon nanotubes also significantly improve the thermal stability of the composite. (3) by a new type of biodegradable plastic was prepared by blending SPI and PBAT melt. Structure blends for island structure, and is dependent on the content of SPI at a low concentration of.SPI (9.1%) compared with the compatibility Well, the content will further increase the interaction between.SPI and PBAT to a certain extent of phase separation, SPI has enhanced effect, with the increase of SPI content, the blends of storage modulus and glass transition temperature increased. The tensile strength and elongation of the blends with SPI content increased, but in SPI the content of up to 28.6% when the blend still has good toughness. The soybean protein molecule contains a large number of hydrophilic group, showed strong water absorption, resulting in the increase of SPI/PBAT absorption rate. With the increase of SPI content, the thermal stability of SPI/PBAT blend material at 200-400 DEG C range reduced, and improved the thermal stability in more high temperature. The blend membrane has good biodegradability in soil. SPI more than PBAT easy degradation, therefore, blending materials containing SPI than pure PBAT fast degradation. (4) in the presence of water prepared by melt The amide SPI/PVA blend membrane.PVA glycerol plasticized SPI hydroxyl groups and the formation of new hydrogen bond, hydrogen bond formation enhances the interaction of PVA and SPI phases, improve their compatibility with.SPI had no obvious influence on the crystal structure of PVA, but the crystallization and melting temperature of PVA decreased. Although the blend film is a certain degree of separation, but the SPI phase can be uniformly dispersed in PVA phase, the compatibility is good, the blends have excellent mechanical properties, even in the case of high protein content blends has high toughness. In addition, SPI added that thermal stability and oxygen barrier properties of blend films are higher than that of pure PVA film, but the water absorption rate and water diffusion coefficient increased, water resistance decreased. (5) in order to further improve the mechanical strength of SPI/PVA film, using the method of melt processing, SPI/PVA/MMT nanocomposites were prepared by composite. The structure depends on the content of MMT. When the MMT content is less than 3.7% when the formation of exfoliated structure; MMT content is more than 7.1% when the formation of intercalated structure. Strong hydrogen bonding between the hydrogen atoms of the silicate layers on the surface of the oxygen atom and protein peptide bonds on the hydrogen atom and the hydroxyl groups on the molecular chain of PVA generation, contribute to the modification of nano.MMT the PVA layer can be used as the nucleation agent good compatibility between filler and matrix, accelerate the crystallization process of PVA, and increased the crystal size distribution. In the process, MMT can obviously improve the viscosity of the melt, therefore, with the increase of MMT content, increase the viscosity of composite melt, shear strengthening, the protein.MMT had better dispersion in the matrix showed obvious enhancement effect, with the increase of MMT content, increase the tensile strength and modulus of composites, the fracture energy increases first and then decreases, and reaches the maximum value when MMT content is 7.1%. Due to the high The effective restriction of the disordered dispersed MMT nanoscale to the matrix segment, the water absorption and water diffusion coefficient of the composite decreased, and the thermal stability increased.

【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TQ316.6

【共引文獻(xiàn)】

相關(guān)期刊論文 前8條

1 尹國(guó)平;陳志周;滑艷穩(wěn);;大豆蛋白基生物降解材料研究進(jìn)展[J];包裝學(xué)報(bào);2014年02期

2 趙薈菁;李鵬舉;尤人傳;劉桂陽(yáng);李明忠;;Structure Changes of Silk Fibroin(SF) by Blending with Poly(ε-caprolactone)(PCL):Characterization of SF and PCL Blended Electrospinning Films[J];Journal of Donghua University(English Edition);2014年03期

3 宋蓮軍;智軍麗;喬明武;張平安;;大豆蛋白/聚酰胺酸鹽薄膜材料的制備及性能研究[J];農(nóng)產(chǎn)品加工(學(xué)刊);2014年08期

4 劉俊豪;楊文鴿;黃珊;;響應(yīng)面法優(yōu)化秘魯魷魚(yú)皮明膠-殼聚糖可食膜的制備工藝[J];核農(nóng)學(xué)報(bào);2014年12期

5 侯春園;喬增瑩;喬圣林;安紅維;趙文靜;李效軍;;pH響應(yīng)的聚β氨基酯聚合物納米粒的制備及其解聚性質(zhì)的研究[J];河北工業(yè)大學(xué)學(xué)報(bào);2015年01期

6 張超;郭曉飛;李武;馬越;趙曉燕;;pH值對(duì)大豆分離蛋白/殼聚糖復(fù)合材料性能的影響[J];中國(guó)糧油學(xué)報(bào);2013年10期

7 張超;郭曉飛;李武;馬越;趙曉燕;;羧甲基纖維素含量對(duì)大豆分離蛋白復(fù)合包裝材料結(jié)構(gòu)和性能的影響[J];中國(guó)食品學(xué)報(bào);2014年02期

8 張敏;張馳;盛思麗;邱建輝;;氮化硼改性兩種脂肪族聚酯復(fù)合材料耐熱性差異[J];陜西科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期

相關(guān)博士學(xué)位論文 前1條

1 王U,

本文編號(hào):1400438


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1400438.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶bf3bf***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日韩和欧美的一区二区三区| 97人妻人人揉人人躁人人| 日本亚洲精品在线观看| 欧美日韩亚洲巨色人妻| 美女黄色三级深夜福利| 天海翼高清二区三区在线| 丰满少妇高潮一区二区| 久久精品少妇内射毛片| 大尺度激情福利视频在线观看| 亚洲乱码av中文一区二区三区| 麻豆在线观看一区二区| 久久经典一区二区三区| 国产精品国产亚洲看不卡| 91麻豆视频国产一区二区| 日韩精品视频香蕉视频| 国产亚洲欧美自拍中文自拍| 久久精品亚洲欧美日韩| 又色又爽又无遮挡的视频| 91亚洲国产日韩在线| 久久99精品日韩人妻| 少妇熟女精品一区二区三区| 伊人天堂午夜精品草草网| 隔壁的日本人妻中文字幕版| 欧美特色特黄一级大黄片| 一二区中文字幕在线观看| 国产精品流白浆无遮挡| 亚洲一区二区精品免费| 美女被啪的视频在线观看| 欧美激情一区二区亚洲专区| 午夜资源在线观看免费高清| 99久久国产精品亚洲| 嫩草国产福利视频一区二区| 日本东京热视频一区二区三区| 熟女少妇久久一区二区三区| 91播色在线免费播放| 亚洲一区二区三区有码| 亚洲中文在线观看小视频| 亚洲二区欧美一区二区| 国产成人亚洲综合色就色| 久久精品a毛片看国产成人| 欧美亚洲三级视频在线观看|