超聲波振動頻率對花崗巖破碎規(guī)律影響的研究
本文關(guān)鍵詞:超聲波振動頻率對花崗巖破碎規(guī)律影響的研究 出處:《吉林大學(xué)》2017年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 超聲波振動 頻率 核磁共振 抗壓強度 巖石破碎
【摘要】:隨著礦產(chǎn)資源勘探深度的增加,復(fù)雜地層與難鉆地層鉆遇率升高,硬巖層所占比例越來越大,現(xiàn)有鉆探技術(shù)已不能完全滿足當今鉆井作業(yè)需求。尤其是在硬巖地層的鉆進中,常規(guī)鉆探方法存在鉆頭壽命短、鉆進效率低、鉆探成本高的技術(shù)問題。因此,亟須研究一種高效碎巖技術(shù)來解決這一鉆進難題,從而提高鉆進效率,降低鉆進成本。本文針對上述鉆進難題,提出采用超聲波振動輔助碎巖的方法。超聲波振動的頻率較高,可以達到硬巖的固有頻率,巖石在共振條件下會產(chǎn)生較大的振幅,此時巖石內(nèi)部裂紋裂隙極易發(fā)育、擴展及貫通,造成巖石破碎難度的大幅度下降。但是,隨著巖石力學(xué)性能劣化現(xiàn)象的產(chǎn)生,其固有頻率的下降規(guī)律以及其本身的固有頻率范圍還有待測試研究。因此,進行超聲波振動頻率對硬巖破碎規(guī)律的研究很有意義,通過研究巖石的破碎規(guī)律,一方面可以估算硬巖的固有頻率,另一方面可以確定巖石頻率的改變規(guī)律,用以確定超聲波振動頻率的加載范圍及加載方式,為超聲波振動輔助硬巖鉆進提供理論指導(dǎo)及技術(shù)支持。本文的研究對象為花崗巖,以試驗研究為基礎(chǔ),輔以理論分析及數(shù)值模擬分析的研究手段,開展超聲波振動頻率對硬巖破碎規(guī)律的研究。本論文的主要研究內(nèi)容及成果如下:(1)結(jié)合斷裂力學(xué)理論和共振碎巖理論,從理論上分析超聲波振動下巖石破碎的機理。建立超聲波振動力學(xué)模型,開展超聲波振動頻率對巖石破碎影響規(guī)律的分析。研究結(jié)果表明在固有頻率范圍之內(nèi)對巖石進行振動加載能更有利于巖石的破碎,系統(tǒng)的阻尼越強則對振動的抑制效果越強。(2)采用ANSYS/WORKBENCH軟件對模型進行了有限元模擬分析。研究巖石內(nèi)部裂紋參數(shù)對模型模態(tài)頻率、諧響應(yīng)頻率、應(yīng)力強度因子以及應(yīng)力應(yīng)變變化規(guī)律的影響。研究發(fā)現(xiàn)裂紋的走向、尺寸、數(shù)量均會造成巖石顆粒模型的模態(tài)頻率降低的現(xiàn)象,并且?guī)r石應(yīng)力、應(yīng)變的峰值隨著振動頻率的增加呈現(xiàn)先增大后降低的趨勢,在振動頻率為35KHz時出現(xiàn)最大值。(3)研制了超聲波振動試驗臺,對花崗巖樣品進行超聲波振動試驗,并對試驗前、后的花崗巖樣品進行核磁共振檢測以及單軸抗壓強度測試。觀察不同試驗條件下花崗巖樣品孔隙度、孔徑分布、T2譜圖以及單軸抗壓強度的變化情況,分析超聲波振動頻率對巖石力學(xué)性能的影響規(guī)律。試驗中發(fā)現(xiàn)花崗巖樣品的核磁測試結(jié)果與其單軸抗壓強度的結(jié)果相吻合,并且采用孔隙度表征巖石的損傷程度,能較好的反映出巖石抗壓強度的強弱;花崗巖樣品的固有頻率在30KHz和35KHz之間,但更加接近30KHz。(4)研制微鉆試驗臺,選擇頻率為20KHz的超聲波換能器進行超聲波振動回轉(zhuǎn)鉆進先導(dǎo)性試驗。對比適當頻率的超聲波振動回轉(zhuǎn)鉆進方法與常規(guī)鉆進方法的差異,并總結(jié)鉆進壓力對超聲波振動回轉(zhuǎn)鉆進方法的影響規(guī)律。在鉆進試驗中發(fā)現(xiàn),隨著鉆壓的增大,鉆進速度的增大幅度呈先增加后減小的趨勢,增幅范圍在13.93%~38.11%之間。
[Abstract]:With the increase of exploration depth of mineral resources, the drilling rate of complex strata and hard drilling strata is increasing, and the proportion of hard rock is bigger and bigger. The existing drilling technology can no longer meet the needs of drilling operation today. Especially in the drilling of hard rock formation, the conventional drilling method has the technical problems of short drilling life, low drilling efficiency and high drilling cost. Therefore, it is urgent to study a high efficient rock breaking technology to solve the drilling problem, so as to improve the drilling efficiency and reduce the drilling cost. In this paper, the method of using ultrasonic vibration to assist rock breaking is put forward in view of the problem of drilling. The higher frequency of ultrasonic vibration can reach the natural frequency of hard rock, and the rock will generate larger amplitude under resonance condition. At this time, the cracks and cracks inside the rock are easy to develop, expand and connect, resulting in a great decline in rock fragmentation difficulty. However, with the deterioration of mechanical properties of rock mechanics, the decline law of natural frequency and the natural frequency range of its own need to be tested. Therefore, it is meaningful to study the ultrasonic vibration frequency of breakage of hard rock, the rock fragmentation rules of natural frequency, one can estimate the hard rock, on the other hand can determine the change law of rock frequency, range and load loading method is used to determine the ultrasonic vibration frequency, to provide theoretical guidance and technical support for ultrasonic vibration assisted drilling in hard rock. The research object of this paper is granite. Based on the experimental research, supplemented by theoretical analysis and numerical simulation analysis methods, we carry out the research on the rule of ultrasonic vibration frequency on the hard rock fragmentation. The main contents and achievements of this paper are as follows: (1) combined with fracture mechanics and resonance rock fragmentation theory, the mechanism of rock fragmentation under ultrasonic vibration is theoretically analyzed. The mechanical model of ultrasonic vibration is set up, and the influence law of ultrasonic vibration frequency on rock breaking is analyzed. The results show that vibration loading of rock in the natural frequency range is more conducive to rock fragmentation, and the stronger the damping of the system is, the stronger the effect of vibration suppression is. (2) the finite element simulation analysis of the model is carried out by using ANSYS/WORKBENCH software. The influence of the internal crack parameters on the modal frequency, harmonic response frequency, stress intensity factor and stress and strain variation of the model is studied. It is found that the trend, size and number of cracks all cause the decrease of modal frequency of rock particle model. The peak value of rock stress and strain increases first and then decreases with the increase of vibration frequency, and the maximum value occurs when the vibration frequency is 35KHz. (3) the ultrasonic vibration test rig was developed, and the ultrasonic vibration test for granite samples was carried out. The granite samples before and after the experiment were tested by NMR and uniaxial compressive strength. The porosity, pore size distribution, T2 spectrum and uniaxial compressive strength of granite samples under different experimental conditions were observed, and the effect of ultrasonic vibration frequency on the mechanical properties of rock was analyzed. The test found that magnetic test results of granite samples and uniaxial compressive strength are consistent, and the damage degree of rock porosity, can reflect the compressive strength of the rock strength of granite samples; natural frequency between 30KHz and 35KHz, but closer to 30KHz. (4) developing a micro drill test rig, selecting the ultrasonic transducer with a frequency of 20KHz to carry out the pilot test of the ultrasonic vibration drilling. The difference between ultrasonic vibration rotary drilling method and conventional drilling method is compared, and the influence rule of drilling pressure on ultrasonic vibration rotary drilling method is summarized. In the drilling test, it is found that with the increase of drilling pressure, the increase of drilling speed increases first and then decreases, and the range of increase is between 13.93%~38.11%.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:P634.1
【相似文獻】
相關(guān)期刊論文 前7條
1 大林;;超聲波縫紉機[J];世界博覽;1984年01期
2 曲建俊,姜開利,張凱,周鐵英;超聲驅(qū)動的超聲波振動減摩作用研究[J];聲學(xué)學(xué)報;2001年06期
3 王立江,趙繼,孟繼安;中置式超聲波振動車削系統(tǒng)二級增幅的研究[J];科學(xué)通報;1991年18期
4 曲建俊;田秀;孫鳳艷;;基于行波型超聲馬達的超聲波振動減摩試驗研究[J];摩擦學(xué)學(xué)報;2007年01期
5 黃德中;;超聲波振動機械設(shè)備的研究[J];紹興文理學(xué)院學(xué)報(自然科學(xué)版);2004年02期
6 張榮康;;利用超聲波振動提高CO_2激光的打孔速度[J];激光與光電子學(xué)進展;1982年06期
7 劉文晶;樊久銘;王剛;;超聲波振動下材料力學(xué)性能實驗裝置的設(shè)計與研制[J];實驗技術(shù)與管理;2008年09期
相關(guān)會議論文 前1條
1 周寧寧;曲建俊;王彥利;;真空下超聲波振動對摩擦磨損的影響[A];中國宇航學(xué)會深空探測技術(shù)專業(yè)委員會第七屆學(xué)術(shù)年會論文集[C];2010年
相關(guān)重要報紙文章 前1條
1 張海波;適用人群更廣泛[N];醫(yī)藥經(jīng)濟報;2003年
相關(guān)博士學(xué)位論文 前2條
1 孫梓航;超聲波振動頻率對花崗巖破碎規(guī)律影響的研究[D];吉林大學(xué);2017年
2 尹崧宇;超聲波振動下花崗巖裂紋變化特性的研究[D];吉林大學(xué);2017年
相關(guān)碩士學(xué)位論文 前8條
1 翟國兵;壓力對超聲波振動碎巖效果影響規(guī)律的研究[D];吉林大學(xué);2016年
2 胡永旭;超聲波振動鏜孔系統(tǒng)精化及試驗研究[D];沈陽航空航天大學(xué);2016年
3 宋軍;不銹鋼超聲波振動車削裝置設(shè)計及仿真分析[D];湖南大學(xué);2012年
4 朱廣;超聲波振動輔助多線鋸加工設(shè)備開發(fā)及實驗研究[D];浙江工業(yè)大學(xué);2015年
5 楊傳龍;基于超聲波振動時效的細金屬絲去應(yīng)力成形技術(shù)研究[D];大連理工大學(xué);2014年
6 韓磊;硬脆材料超聲波振動輔助研磨拋光的仿真與試驗研究[D];吉林大學(xué);2015年
7 李濤;超聲波扭振鏜孔系統(tǒng)設(shè)計及其研究[D];沈陽航空航天大學(xué);2014年
8 李雙雙;大功率超聲波振動系統(tǒng)分析與設(shè)計[D];杭州電子科技大學(xué);2015年
,本文編號:1340752
本文鏈接:http://sikaile.net/shoufeilunwen/gckjbs/1340752.html