天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 工程碩士論文 >

煤制天然氣合成氣中CO_2分離方法與特性研究

發(fā)布時(shí)間:2018-08-26 20:42
【摘要】:在目前的煤制天然氣(SNG)工藝中,一般采用低溫甲醇洗工藝進(jìn)行CO2氣體的脫除,然而,由于低溫甲醇洗往往受到酸性氣體中S含量以及裝置制冷量的影響,導(dǎo)致脫除效果下降。因此,需要對(duì)現(xiàn)有的CO2氣體脫除方法特性進(jìn)行研究,為尋找可替代低溫甲醇洗的更有安全、有效的脫除酸性氣體的方法提供一定的理論基礎(chǔ)和數(shù)據(jù)支持。本文在實(shí)驗(yàn)室的規(guī)模下,利用膜分離實(shí)驗(yàn)系統(tǒng)、MEA化學(xué)吸收實(shí)驗(yàn)系統(tǒng)對(duì)CO2膜分離法及MEA化學(xué)吸收法進(jìn)行了實(shí)驗(yàn)研究,并提出了理論分析方法,在此基礎(chǔ)上,本文提出了新型的膜分離——化學(xué)吸收聯(lián)合脫除CO2的方法,在膜分離——MEA化學(xué)吸收實(shí)驗(yàn)臺(tái)上對(duì)該方法進(jìn)行了驗(yàn)證。研究結(jié)果如下:膜分離系數(shù)是衡量高分子膜分離氣體性能的一個(gè)重要參數(shù),進(jìn)氣的體積流率越大、壓力越高以及溫度越低,膜分離系數(shù)越大,膜滲透端得到的氣體CO2濃度越高,Generon210膜的分離系數(shù)大于Prism膜,但后者在進(jìn)氣工況變化時(shí)分離性能更加穩(wěn)定,在0.9MPa,25℃,60L/min的進(jìn)氣條件下,Generon210膜滲透端CO2濃度為63.4%,分離效率為63.27%,CH4回收率為93.55%,濃度為95.5%。MEA的流量與溫度越高,MEA吸收CO2量越大,MEA溶液濃度超過(guò)30%之后,由于溶液粘度增大,吸收量下降,60L/minCO2濃度為15%的混合氣體經(jīng)過(guò)30%、55℃、15L/h的MEA溶液吸收后,分離效率可達(dá)到99%以上,回收的CH4濃度在99%以上;30%、100℃的MEA富液與6m3/h的蒸汽接觸可獲得最高的解吸率,為72.52%。根據(jù)兩性離子機(jī)理來(lái)準(zhǔn)確地描述MEA化學(xué)吸收與解吸過(guò)程,并由機(jī)理推導(dǎo)的動(dòng)力學(xué)模型可計(jì)算MEA化學(xué)吸收過(guò)程中的吸收速率以及解吸過(guò)程中任一時(shí)刻的解吸率。聯(lián)合法分離CO2的過(guò)程受到進(jìn)氣壓力、體積流率、溫度以及MEA濃度、流量、溫度等多種因素的影響,要達(dá)到理想的分離效果,必須調(diào)節(jié)MEA與CO2的摩爾比達(dá)到1.15以上,此時(shí)分離效率為81%,回收的CH4濃度為95.5%。聯(lián)合法有利于大量減少化學(xué)吸收所需的MEA量,因此適用于大氣量處理工藝中,可作為替代低溫甲醇洗的方法。
[Abstract]:In the current (SNG) process of natural gas from coal to natural gas, the low temperature methanol washing process is generally used to remove CO2 gas. However, the low temperature methanol washing process is often affected by the S content in the acid gas and the cooling capacity of the unit, which results in the decrease of the removal effect. Therefore, it is necessary to study the characteristics of existing CO2 gas removal methods in order to provide a theoretical basis and data support for finding a more safe and effective method to remove acid gas from methanol washing at low temperature. In this paper, the CO2 membrane separation method and MEA chemical absorption method are studied by using the membrane separation experiment system under the laboratory scale, and the theoretical analysis method is put forward. In this paper, a new method of membrane separation-chemical absorption combined removal of CO2 has been proposed and verified on the membrane separation-MEA chemical absorption test bench. The results are as follows: the membrane separation coefficient is an important parameter to measure the gas separation performance of polymer membrane. The larger the volumetric flow rate of inlet air, the higher the pressure and the lower the temperature, the larger the membrane separation coefficient is. The higher the gas CO2 concentration at the permeation end of the membrane is, the higher the separation coefficient of the membrane is higher than that of the Prism membrane, but the separation performance of the latter is more stable when the inlet condition changes. The concentration of CO2 at the osmotic end of the membrane is 63.4, the separation efficiency is 63.27g / min, and the recovery rate of CH4 is 93.55. The higher the flow rate and temperature of 95.5%.MEA is, the higher the concentration of CO2 is, and the higher the concentration of CO2 is, the higher the solution viscosity is. After absorption of the mixed gas with the concentration of 60L / min CO _ 2 is 15%, the separation efficiency can reach more than 99%, and the highest desorption rate can be obtained when the concentration of the recovered CH4 is more than 99% and the rich solution of MEA has contact with the vapor of 6m3/h, which is 72.52%. According to the amphoteric ion mechanism, the chemical absorption and desorption process of MEA can be accurately described. The kinetic model derived from the mechanism can be used to calculate the absorption rate in the chemical absorption process of MEA and the desorption rate at any time during the desorption process. The combined separation of CO2 is influenced by inlet pressure, volume flow rate, temperature, concentration of MEA, flow rate, temperature and so on. To achieve the ideal separation effect, the molar ratio of MEA to CO2 must be adjusted to be above 1.15. The separation efficiency was 81 and the recovered CH4 concentration was 95. 5%. The combined method is beneficial to reduce the amount of MEA needed for chemical absorption, so it can be used as a substitute for methanol washing at low temperature.
【學(xué)位授予單位】:上海交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TE665.3

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 蔣作良;;化學(xué)吸收及其計(jì)算[J];遼寧化工;1983年04期

2 徐金火,湯渭龍,沈復(fù),李志良;多元化學(xué)吸收液平衡閃蒸的計(jì)算模型[J];化學(xué)工程;1990年05期

3 李相福;張新;;CO_2的化學(xué)性處理技術(shù)[J];廣州化工;2013年02期

4 張興法;化學(xué)吸收增強(qiáng)因子的計(jì)算和應(yīng)用[J];氮肥設(shè)計(jì);1995年03期

5 宋存義;周向;;捕集低濃度二氧化碳的化學(xué)吸收工藝及其綜合比較[J];環(huán)境工程學(xué)報(bào);2012年01期

6 張成芳;;物理吸收與化學(xué)吸收[J];化肥設(shè)計(jì);1983年03期

7 張成芳;;物理吸收與化學(xué)吸收[J];化肥設(shè)計(jì);1983年06期

8 林玄鶴;兩種氣體同時(shí)吸收的數(shù)學(xué)模型[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);1987年03期

9 張成芳;;物理吸收和化學(xué)吸收[J];化肥設(shè)計(jì);1982年03期

10 劉遵仁;;伴有飛速不可逆化學(xué)反應(yīng)的吸收?qǐng)D解分析和計(jì)算[J];河北工學(xué)院學(xué)報(bào);1983年02期

相關(guān)會(huì)議論文 前2條

1 陸文龍;;二氧化碳的捕集技術(shù)研究進(jìn)展[A];第十屆中國(guó)科協(xié)年會(huì)第18分會(huì)二氧化碳減排和綠色化利用與發(fā)展研討會(huì)論文集[C];2008年

2 曾令可;李萍;程小蘇;王慧;稅安澤;劉平安;;窯爐煙氣中二氧化碳的回收工藝探討[A];中國(guó)硅酸鹽學(xué)會(huì)陶瓷分會(huì)2009年年會(huì)論文集(二)[C];2009年

相關(guān)博士學(xué)位論文 前3條

1 任杰;新型CO_2吸收(附)劑的制備及性能研究[D];浙江大學(xué);2013年

2 劉楠;生物還原耦合化學(xué)吸收處理煙氣中NO_x的關(guān)鍵因素及作用機(jī)制[D];浙江大學(xué);2012年

3 晏水平;膜吸收和化學(xué)吸收分離CO_2特性的研究[D];浙江大學(xué);2009年

相關(guān)碩士學(xué)位論文 前10條

1 凌凡;煤制天然氣合成氣中CO_2分離方法與特性研究[D];上海交通大學(xué);2015年

2 吳成志;化學(xué)吸收—生物還原處理煙氣中的氮氧化物[D];浙江大學(xué);2006年

3 白宸陽(yáng);非熱放電與化學(xué)吸收結(jié)合廢氣脫硝實(shí)驗(yàn)研究[D];大連海事大學(xué);2013年

4 馮琳玉;過(guò)一硫酸氫鹽化學(xué)吸收氧化去除甲硫醇惡臭氣體[D];中國(guó)海洋大學(xué);2014年

5 仲偉龍;CO_2化學(xué)吸收技術(shù)研究[D];浙江大學(xué);2008年

6 方美青;O_3氧化—化學(xué)吸收聯(lián)合處理再生膠惡臭氣體的研究及應(yīng)用[D];浙江工業(yè)大學(xué);2010年

7 姜錦林;化學(xué)吸收—生物還原法處理煙氣中氮氧化物[D];浙江大學(xué);2008年

8 翟代龍;燃煤電廠化學(xué)吸收CO_2捕獲過(guò)程的優(yōu)化集成研究[D];華北電力大學(xué);2014年

9 張苗苗;燃煤電廠煙氣CO_2化學(xué)吸收模擬與分析[D];山東科技大學(xué);2011年

10 馮X;基于分子模擬的CO_2吸收離子液體篩選[D];華東理工大學(xué);2012年

,

本文編號(hào):2206100

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2206100.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c800b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com