五缸泥漿泵動(dòng)力端動(dòng)力學(xué)仿真與曲軸結(jié)構(gòu)改進(jìn)
[Abstract]:Mud pump is an important core of oil drilling unit. It has the characteristics of wide medium, high pressure and high efficiency. In oil drilling, with the deepening of drilling depth, mud pump is developing towards the direction of large cylinder diameter, high power, long stroke and high pump pressure. Mud pump is an important equipment in petroleum production, its performance plays an important role in oil production, so it is of great significance to improve the R & D and design level of domestic five-cylinder mud pump and to increase the performance and quality of equipment. The crankshaft is the most important part of the crankshaft system at the power end of the mud pump. Its structure and fatigue strength directly affect the reliability and service life of the mud pump and the safety of production. The crankshaft is subjected to cyclic and strong alternating load when the mud pump is working, so it is easy to produce the phenomenon of stress concentration, which will lead to fatigue damage, which will result in safety accidents and a large amount of economic losses. Therefore, the mud pump is simulated by AMESim and LMS virtual.Lab Motion, and the stress distribution of the crankshaft is obtained. Then, the maximum stress of the crankshaft is improved to increase the service life and safety of the crankshaft. In this paper, a five-cylinder single-acting mud pump with high power and large displacement is taken as the research object. Through the principle of motion and dynamics of mechanical system, computer programming technology and combined simulation technology, the mud pump is deeply studied and analyzed. The specific research contents and research results include the following aspects. (1) first of all, the overall scheme of five-cylinder mud pump is determined, and the top-down design method is used to establish the top-level skeleton model in Creo software. Finally, the integral model of five-cylinder mud pump is established. The parameters of the five-cylinder mud pump are designed in Mathcad, and then the parameters of the five-cylinder mud pump are designed and transmitted by using the seamless connection between Mathcad and Creo software. (2) the basic theory analysis of the five-cylinder mud pump is carried out. The internal and external forces of mud pump and the kinematics and dynamics of dynamic end are analyzed. (3) the simulation model of crankshaft system, cylinder and valve of mud pump is established in AMESim. The 1D model of mud pump system is built. The flow and pressure fluctuation characteristics of the piston in the cylinder and the flow rate and pressure of the slurry pump are obtained by simulation analysis, and compared with the theoretical calculation. The accuracy of the mud pump model constructed in AMESim is verified. (4) based on the combined simulation of LMS Virtual.Lab Motion and AMESim, the rigid-flexible coupling kinematics and dynamics simulation of the flexible crankshaft mud pump is carried out. The kinematics characteristics and piston motion characteristics of each component, the variation law of main dynamic forces such as crankshaft tip and spindle neck, and the distribution of crankshaft stress are obtained. (5) according to the distribution of crankshaft stress, To reduce the stress of crank pin, the transition angle is improved to step round corner. Then, based on the response surface method (RSW (Response Surface Methodology), an optimization model with the minimum stress at the crank tip as the optimization target, R1 and R2H as the design factor, is established. By analyzing the improved model, it is concluded that the stress of the improved step corner is reduced by 20.64% than that of the ordinary circular angle.
【學(xué)位授予單位】:西南石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TE926
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 彭春風(fēng);結(jié)構(gòu)更緊湊,輸出脈動(dòng)近于零的泥漿泵[J];國外油田工程;2003年02期
2 王毅;;泥漿泵的發(fā)展及活塞優(yōu)化研究[J];中國石油和化工標(biāo)準(zhǔn)與質(zhì)量;2012年16期
3 EdwinC·LewisⅡ;郭文芝;;泥漿泵損壞分析——泥漿泵部件如何損壞[J];國外地質(zhì)勘探技術(shù);1983年02期
4 ;泥漿泵裝輪子[J];探礦工程;1960年Z1期
5 ;電動(dòng)泥漿泵設(shè)計(jì)試驗(yàn)報(bào)告[J];農(nóng)業(yè)科技通訊;1974年S3期
6 ;關(guān)于在十種泥漿泵上實(shí)現(xiàn)活塞通用化的意見[J];石油鉆采機(jī)械情報(bào);1975年Z1期
7 成都地質(zhì)學(xué)院探工系泥漿泵小組;正確選用和改造現(xiàn)有泥漿泵[J];探礦工程;1979年02期
8 金元善;;油隔離泥漿泵的改進(jìn)意見[J];輕金屬;1979年04期
9 羅伯特L·布盧姆 ,陳山俊;談三缸泥漿泵的維護(hù)[J];石油鉆采機(jī)械;1980年06期
10 金元善;;油隔離泥漿泵的系列化[J];輕金屬;1980年04期
相關(guān)會(huì)議論文 前7條
1 趙洪慧;;淺談泥漿泵在運(yùn)行中抽不上水原因分析及改進(jìn)方法[A];全國大中型水電廠技術(shù)協(xié)作網(wǎng)第二屆年會(huì)論文集[C];2005年
2 張修志;佘衛(wèi)光;趙增文;;耐磨材料在泥漿泵中的應(yīng)用[A];機(jī)械疏浚專業(yè)委員會(huì)第二十次疏浚與吹填技術(shù)經(jīng)驗(yàn)交流會(huì)論文與技術(shù)經(jīng)驗(yàn)總結(jié)文集[C];2007年
3 王熙銘;;泥漿泵的損壞形式報(bào)損極限及大修方法[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學(xué)術(shù)年會(huì)文集[C];2000年
4 劉偉杰;;泥漿泵直流馬達(dá)電樞電流不平衡原因解析[A];2003年度海洋工程學(xué)術(shù)會(huì)議論文集[C];2003年
5 孫永全;郭建英;苑惠娟;蘇子美;;鉆井泥漿泵活塞壽命的Bayes估計(jì)[A];2012年全國機(jī)械行業(yè)可靠性技術(shù)學(xué)術(shù)交流會(huì)暨第四屆可靠性工程分會(huì)第四次全體委員大會(huì)論文集[C];2012年
6 黨恩;張中旗;;F-1300泥漿泵液缸開裂分析[A];2011年全國失效分析學(xué)術(shù)會(huì)議論文集[C];2011年
7 邢天明;劉敏香;史紀(jì)安;浮俊超;葛瑋;;NL150-25型遠(yuǎn)距離輸沙小泵在機(jī)淤固堤工程施工中的應(yīng)用[A];機(jī)械疏浚專業(yè)委員會(huì)第十六次疏浚與吹填技術(shù)經(jīng)驗(yàn)交流會(huì)論文與技術(shù)經(jīng)驗(yàn)總結(jié)文集[C];2002年
相關(guān)重要報(bào)紙文章 前10條
1 梁元濂 作者單位:中國地質(zhì)科學(xué)院勘探技術(shù)研究所;泥漿泵開動(dòng)后不上水怎么辦[N];地質(zhì)勘查導(dǎo)報(bào);2007年
2 通訊員 趙則陽 羅敏;新型泥漿泵防堵器降低電機(jī)損壞幾率[N];中國石油報(bào);2007年
3 記者 李巖 通訊員 程琳 李艷麗;泥漿泵實(shí)現(xiàn)泵量多級調(diào)節(jié)[N];地質(zhì)勘查導(dǎo)報(bào);2008年
4 通訊員 王安軍 劉華 江艷;全球首臺(tái)3000馬力五缸泥漿泵成新寵[N];中國石油報(bào);2011年
5 記者 岳雙才 特約記者 馬校生;華北榮盛泥漿泵產(chǎn)品全銷國外[N];中國石油報(bào);2014年
6 韓大宏 宋金婷 張國安;工程施工與管理中節(jié)能增效的幾點(diǎn)體會(huì)[N];黃河報(bào);2007年
7 通訊員 江艷 記者 郭芳;我國首臺(tái)2200馬力輕型高壓泥漿泵研制成功[N];中國石油報(bào);2014年
8 記者 梁茵邋通訊員 江艷;F——2200HL泥漿泵列入中國企業(yè)新紀(jì)錄[N];中國石油報(bào);2007年
9 通訊員 劉華 馬香;F1——1600輕型泥漿泵在寶石公司研制成功[N];中國石油報(bào);2010年
10 記者 甘豐錄;TSC鉆井泥漿泵驚艷石油展[N];中國船舶報(bào);2008年
相關(guān)博士學(xué)位論文 前1條
1 汝紹鋒;泥漿泵活塞仿生優(yōu)化設(shè)計(jì)及其耐磨密封性能研究[D];吉林大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 孫寶賢;高壓注射泥漿泵可靠性分析與參數(shù)優(yōu)化[D];重慶交通大學(xué);2012年
2 鄭會(huì)勇;交流變頻泥漿泵試驗(yàn)臺(tái)的研制[D];東北石油大學(xué);2015年
3 謝寶偉;鉆井三缸泥漿泵振動(dòng)測試與典型故障分析[D];東北石油大學(xué);2015年
4 陳云龍;三缸單作用2200馬力高壓泥漿泵結(jié)構(gòu)優(yōu)化設(shè)計(jì)[D];西安石油大學(xué);2016年
5 孫藝文;高密封性泥漿泵活塞的試驗(yàn)研究及機(jī)理分析[D];吉林大學(xué);2017年
6 趙磊;五缸泥漿泵動(dòng)力端動(dòng)力學(xué)仿真與曲軸結(jié)構(gòu)改進(jìn)[D];西南石油大學(xué);2017年
7 呂圣仕;新型液壓泥漿泵自動(dòng)換向控制技術(shù)[D];蘭州理工大學(xué);2005年
8 王述坤;無線傳感器網(wǎng)絡(luò)在鉆井泥漿泵監(jiān)測中的應(yīng)用[D];湖北工業(yè)大學(xué);2013年
9 白瑤;泥漿泵筑壩過程監(jiān)測[D];西北農(nóng)林科技大學(xué);2014年
10 呂蘭;石油鉆井用新型五缸泥漿泵的研發(fā)及應(yīng)用[D];西南交通大學(xué);2014年
,本文編號(hào):2183432
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2183432.html