Q345鋼連鑄坯質(zhì)量研究
[Abstract]:With the construction of bridge, the application of Q345 steel is more and more extensive. This requires that Q345 steel be able to maintain good performance even in severe service conditions, and the billet is often accompanied by defects such as transverse cracks on the surface. Although transverse cracks can be eliminated by means of hot sweep, the hot sweep process is time-consuming and laborious. The production efficiency is seriously affected. At present, there are serious surface transverse cracks in Q345 steel continuous casting billet of 260mm 脳 2070mm specification produced by a domestic steel factory. Aiming at the problem of surface transverse crack of Q345 steel, this paper starts with the solidification behavior of the billet and takes adjusting the technological parameters of continuous casting as the technical means. The causes, influencing factors and control measures of the transverse cracks on the billet surface are analyzed in depth to control the surface cracks of the billet fundamentally. In view of the above problems, the typical crack samples of Q345 continuous casting billet were analyzed by metallographic microscope and scanning electron microscope. It was found that the cracks mainly distributed on the surface near the corner of the billet. The proeutectoid ferrite film extends to the inner part of the slab along the grain boundary. The statistical analysis of the proeutectoid ferrite film under the microscope shows that the thickness of the proeutectoid ferrite film is too large, and at the same time, the second phase particle precipitates on the austenite grain boundary, which is distributed in chain shape. When the grain boundary is embrittlement, holes are easily formed under stress, which is not conducive to controlling the crack. The composition analysis of the point taken from the crack is carried out, and it is found that there is no composition of the mold powder. It is inferred that the crack should be formed by stress during the bending and straightening of the casting mould. It is found that the full thickness specimen has low equiaxed crystal ratio and developed columnar crystal, and that the depth of vibration marks on the narrow surface of the billet is large, which may lead to uneven heat transfer on the narrow surface of the billet and easily produce cracks. The microstructure of the billet was observed by metallographic microscope. It was found that the surface of the billet was a chilling layer with a certain thickness and the internal structure was Weiss's structure. The statistical analysis of the thickness of the quench layer on the surface of the billet was carried out. The thickness of the chilled layer is very thin or there is no chilling layer, the internal Weiss structure is easy to crack under the stress, and the phenomenon of preeutectoid ferrite distribution in the narrow surface of the billet is also obvious. The continuous distribution of soft phases is also beneficial to the crack propagation, and at the same time, it is found in the outer arc corner of the billet that the structure area of the Soxhlet body is probably caused by the excessive taper of the mould, and that too large the mold taper will increase the friction force of the billet. Transverse surface cracks appear in the process of billet drawing. Based on the above research results and referring to the taper parameters of continuous casting mould (1.1- 1.2%), three different technological schemes of mold taper of 0.9g 1.0% and 1.1% are worked out. The quality of billet under different technological parameters is studied and compared. When the mold taper is 1.0, the thickness of the quench layer is the largest and the structure of the billet is relatively more uniform. The hardness data distribution is relatively concentrated and the microstructure transition is more uniform when measured by Vickers hardness meter. When the mold taper is 1.0, the air gap caused by the solidification shrinkage of the shell can be compensated well, and the heat transfer on the surface of the billet can be ensured. The results show that the original mold taper parameter is too large during the continuous casting process, which leads to the appearance of surface transverse cracks. After the process is improved, the casting quality is obviously improved when the mold taper parameter is set to 1.0.
【學(xué)位授予單位】:鄭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TF777
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 杜鳳書;穆光華;孫保純;周廣英;畢鑒智;王連棋;周海翔;;壓鑄件中破碎激冷層的研究[J];沈陽(yáng)工業(yè)學(xué)院學(xué)報(bào);1988年01期
2 趙晗;揚(yáng)志才;孟羽;;低碳非調(diào)質(zhì)鋼坯角部表面凹陷激冷層消失成因分析[J];物理測(cè)試;2006年01期
3 朱獻(xiàn)文;鋁合金壓鑄件中的斷裂激冷層[J];鋁加工;1997年02期
4 黃人達(dá);王立人;楊甫臣;馬醒環(huán);;鑄鐵凸輪軸的激冷與性能研究[J];現(xiàn)代鑄鐵;1987年03期
5 姚三九;汪大經(jīng);;加碲冷硬抗磨鑄鐵[J];河北冶金;1992年06期
6 康健英;胡嘉璋;;Cr12MoV鋼電火花加工表面激冷層組織及結(jié)構(gòu)的研究[J];冶金分析與測(cè)試(冶金物理測(cè)試分冊(cè));1984年03期
7 張正貴,董海;破碎激冷層對(duì)壓鑄件性能影響的分析[J];沈陽(yáng)大學(xué)學(xué)報(bào);2000年02期
8 解子章,吳成義,揚(yáng)讓;液態(tài)激冷Mn-Mo-Co馬氏體時(shí)效鋼組織結(jié)構(gòu)和性能的研究[J];北京鋼鐵學(xué)院學(xué)報(bào);1986年01期
9 盧勤杰;盧金鐸;葛輝;;冷激鑄鐵凸輪軸激冷層氣孔缺陷及對(duì)策[J];現(xiàn)代鑄鐵;2008年03期
10 米國(guó)發(fā);何斌鋒;;孕育劑加入量對(duì)激冷鑄鐵凸輪軸組織性能的影響[J];熱加工工藝;2009年09期
相關(guān)會(huì)議論文 前10條
1 岳保良;;160mm×220mm矩形坯角部橫裂紋原因分析與解決措施[A];連鑄品種和鑄坯質(zhì)量技術(shù)研討會(huì)論文匯編[C];2004年
2 劉洋;韋耀環(huán);馬瑞金;關(guān)春陽(yáng);王玉龍;王文軍;;連鑄坯角部橫裂紋在軋后鋼板邊部演化研究[A];2011年第九屆全國(guó)連鑄學(xué)術(shù)會(huì)議論文集[C];2011年
3 李志強(qiáng);吳國(guó)榮;陳永;曾建華;潘紅;;板坯角部橫裂紋與熱軋板缺陷對(duì)應(yīng)關(guān)系研究[A];2013年連鑄新技術(shù)及關(guān)鍵耐材長(zhǎng)壽化學(xué)術(shù)研討會(huì)論文集[C];2013年
4 賀東風(fēng);常圣;徐安軍;;基于邊部控制技術(shù)的連鑄板坯表面橫裂紋控制研究[A];第十八屆(2014年)全國(guó)煉鋼學(xué)術(shù)會(huì)議論文集——S08:品種開發(fā)與質(zhì)量控制[C];2014年
5 呂龍廳;常永芳;張炯明;;20MnSi方坯表面橫裂紋的研究[A];中國(guó)金屬學(xué)會(huì)2003中國(guó)鋼鐵年會(huì)論文集(3)[C];2003年
6 周學(xué)禹;徐立山;高建國(guó);薛啟河;張志華;;釩鈦微合金鋼連鑄坯表面橫裂紋控制技術(shù)[A];河北省2011年煉鋼連鑄生產(chǎn)技術(shù)與學(xué)術(shù)交流會(huì)論文集[C];2011年
7 王志軍;孫錳林;郝國(guó)旺;劉云龍;王曉宇;;含鈦船板鋼鑄坯角部橫裂紋產(chǎn)生原因及改進(jìn)措施[A];2012年微合金鋼連鑄裂紋控制技術(shù)研討會(huì)論文集[C];2012年
8 余連權(quán);;大型鋼錠尾部橫裂紋成因及解決辦法[A];2012年鋼錠制造技術(shù)與管理研討會(huì)論文集[C];2012年
9 周艷群;周學(xué)禹;劉玉偉;李兆遠(yuǎn);趙穎;;微合金鋼鑄坯表面橫裂紋的控制實(shí)踐[A];2012河北省煉鋼連鑄生產(chǎn)技術(shù)與學(xué)術(shù)交流會(huì)論文集[C];2012年
10 王悅新;韋耀環(huán);劉相華;喻海良;劉洋;;中厚板含鈮鋼鑄坯橫裂紋分析及控制措施[A];第七屆(2009)中國(guó)鋼鐵年會(huì)論文集(上)[C];2009年
相關(guān)博士學(xué)位論文 前1條
1 楊小剛;低碳微合金鋼鑄坯角部橫裂紋控制研究[D];北京科技大學(xué);2016年
相關(guān)碩士學(xué)位論文 前5條
1 姬潁倫;Q345鋼連鑄坯質(zhì)量研究[D];鄭州大學(xué);2017年
2 郭達(dá);低合金鋼大斷面矩形鑄坯表面橫裂紋的研究與控制[D];遼寧科技大學(xué);2016年
3 李菊艷;攀鋼板坯角部橫裂紋控制的研究[D];重慶大學(xué);2010年
4 王青亮;連鑄坯表面橫裂紋形成及其影響因素的研究[D];燕山大學(xué);2012年
5 高愛民;ROKOP連鑄坯橫裂紋的研究[D];河北理工學(xué)院;2004年
,本文編號(hào):2161206
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2161206.html