壓力容器焊接質(zhì)量控制中的數(shù)據(jù)挖掘方法及其應(yīng)用研究
[Abstract]:At present, welding is becoming more and more important in the manufacturing process of pressure vessels. In order to ensure the quality of pressure vessels, the control and management of welding quality is particularly critical. With the rapid development of computer technology and database technology, the modern manufacturing industry has produced massive data in the process of production. Obviously, the traditional statistical method is in a dilemma and can not meet the needs of the development of the times. Aiming at the problem that mass data can not extract knowledge in modern manufacturing industry, this paper applies data mining technology to welding quality control in manufacturing industry, combining with the actual project of a company. On the basis of previous studies, this paper focuses on the work of welding quality control of pressure vessels. The research contents are summarized as follows: first, aiming at the phenomenon of nonconformity of welding quality of pressure vessels, the quality management 5M1E (operator, machine equipment), Raw materials, process methods, environment and measurement, etc., the whole process, multi-direction, multi-angle to analyze the factors that affect the welding quality of pressure vessels, and reduce the abnormal range of welding quality. Secondly, this paper proposes a classification method based on feature selection and decision tree C5.0. Firstly, the feature selection algorithm is used to reduce the dimension of a large number of features. The decision tree C5.0 algorithm is used to construct the welding classification model, so as to find out the influencing factors that affect the welding quality. Regard these important factors as "quality control points" and strictly control them. Finally, the decision tree algorithm is compared with the neural network algorithm and the Logistic regression algorithm. The experimental results show that the accuracy of the decision tree algorithm is better than that of the neural network algorithm and the Logistic regression algorithm. The result of decision tree analysis is applied to the actual welding work of the company, and the welding problem is obviously improved. Its concept and guiding ideology have a definite value of popularization and application in the pressure vessel manufacturing industry.
【學(xué)位授予單位】:天津工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TG457.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李德仁;馬軍;邵振峰;;論時(shí)空大數(shù)據(jù)及其應(yīng)用[J];衛(wèi)星應(yīng)用;2015年09期
2 晁永生;孫文磊;;基于粗糙集的焊接類型關(guān)聯(lián)規(guī)則提取[J];計(jì)算機(jī)工程與應(yīng)用;2015年15期
3 李平榮;;大數(shù)據(jù)時(shí)代的數(shù)據(jù)挖掘技術(shù)與應(yīng)用[J];重慶三峽學(xué)院學(xué)報(bào);2014年03期
4 楊海燕;;淺談提高壓力容器焊接質(zhì)量的舉措[J];河北農(nóng)機(jī);2014年05期
5 王小軍;白杰;;產(chǎn)品質(zhì)量影響因素與質(zhì)量監(jiān)管模式創(chuàng)新[J];企業(yè)改革與管理;2014年07期
6 鄭麗琴;;基于數(shù)據(jù)挖掘的決策樹算法和C5.0原理簡介[J];知識經(jīng)濟(jì);2014年07期
7 李孝偉;陳福才;李邵梅;;基于分類規(guī)則的C4.5決策樹改進(jìn)算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2013年12期
8 宋建聰;戴青云;付品欣;鐘潤陽;;數(shù)據(jù)挖掘在生產(chǎn)過程質(zhì)量管理中的應(yīng)用[J];現(xiàn)代制造工程;2013年09期
9 楊麗勇;;數(shù)據(jù)挖掘在商業(yè)決策系統(tǒng)中的應(yīng)用[J];現(xiàn)代商業(yè);2013年18期
10 帥青紅;方玲;匡遠(yuǎn)競;;基于決策樹與logistic的上市公司信用評估比較研究[J];西南民族大學(xué)學(xué)報(bào)(人文社會科學(xué)版);2013年05期
相關(guān)博士學(xué)位論文 前1條
1 伊衛(wèi)國;基于關(guān)聯(lián)規(guī)則與決策樹的預(yù)測方法研究及其應(yīng)用[D];大連海事大學(xué);2012年
相關(guān)碩士學(xué)位論文 前9條
1 李迎春;數(shù)據(jù)挖掘中決策樹分類算法的研究[D];湖南師范大學(xué);2015年
2 黃俊輝;基于數(shù)據(jù)挖掘的CSG鑄坯質(zhì)量控制應(yīng)用研究[D];華南理工大學(xué);2013年
3 廖慶富;數(shù)據(jù)挖掘在提高SMT焊接質(zhì)量中的應(yīng)用研究[D];廣東工業(yè)大學(xué);2013年
4 黃慧中;基于Logistic和神經(jīng)網(wǎng)絡(luò)的個(gè)人信用評估組合模型研究[D];電子科技大學(xué);2012年
5 董小格;基于數(shù)據(jù)挖掘的焊件質(zhì)量診斷技術(shù)研究[D];東北石油大學(xué);2012年
6 盧輝;電力工程焊接質(zhì)量管理與應(yīng)用研究[D];華北電力大學(xué)(北京);2011年
7 郭威;數(shù)據(jù)挖掘技術(shù)在銀行CRM中的應(yīng)用研究[D];北京工商大學(xué);2010年
8 孟玉明;數(shù)據(jù)挖掘在電信客戶流失預(yù)測中的應(yīng)用研究[D];中南大學(xué);2007年
9 楊蓮;數(shù)據(jù)挖掘的統(tǒng)計(jì)模型和算法的研究[D];重慶大學(xué);2005年
,本文編號:2160725
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2160725.html