天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 碩博論文 > 工程碩士論文 >

輸送帶縱向撕裂一體化雙目視覺檢測方法研究

發(fā)布時間:2018-07-29 16:34
【摘要】:輸送機是現(xiàn)代采礦工業(yè)的重要運輸工具。在煤炭運輸中,煤矸石、金屬材料等堅硬物質(zhì)經(jīng);旌显诿禾恐,可能會使得輸送帶產(chǎn)生縱向撕裂,這樣的猝發(fā)事故通常會導致采礦設(shè)備和生產(chǎn)的停工,造成巨大的經(jīng)濟損失,因此我們需要實時、可靠的檢測輸送帶縱向撕裂。近年來,由于機器視覺可以提高檢測效率和精度,在輸送帶故障檢測中,視覺檢測成為一個重要的研究方向。本文基于機器視覺,綜合紅外成像技術(shù)和可見光成像技術(shù)的互補特性,提出了一種基于紅外與可見光融合的輸送帶縱向撕裂一體化雙目視覺檢測方法,并依據(jù)輸送帶縱向撕裂視覺檢測方法現(xiàn)有問題,提出本文檢測方法的設(shè)計方案,主要包括三部分:輸送帶圖像采集,輸送帶圖像預處理,輸送帶圖像縱向撕裂特征提取與識別。在輸送帶圖像采集中,基于紅外與可見光融合技術(shù),論文提出一種新的一體化雙目視覺傳感裝置采集紅外與可見光融合圖像,該傳感裝置通過棱鏡分光的方法將從同一鏡頭入射的同軸光分為紅外光和可見光,并分別進入兩個感光芯片,可以同時捕獲同一場景下的紅外信息和可見光信息,在圖像融合前無需配準處理。本文研究了該傳感裝置的成像原理,并在MATLAB上對其成像過程進行理論仿真研究,驗證其可行性和有效性。由于論文只對提出的一體化雙目視覺傳感裝置進行了理論仿真研究,因此在輸送帶圖像采集實驗部分,首先采用紅外相機和可見光相機分別采集紅外圖像和可見光圖像,然后再進行紅外與可見光圖像的配準融合,最終實現(xiàn)輸送帶紅外與可見光融合圖像的采集。在實驗室搭建圖像采集實驗平臺,實現(xiàn)輸送帶在撕裂狀態(tài)、正常狀態(tài)和劃痕狀態(tài)的融合圖像的采集。輸送帶融合圖像采集完成后,為使得檢測效果更可靠,需對其進行預處理操作。論文分析了輸送帶縱向撕裂的特征,并據(jù)此對圖像進行了一系列的預處理,包括去除圖像噪聲,增強圖像對比度,突出檢測中感興趣的區(qū)域,提取出撕裂目標信息。預處理后的圖像視覺效果較好,撕裂目標較為突出,為后續(xù)縱向撕裂特征提取與識別做了較好準備。在得到的預處理圖像的基礎(chǔ)上,本文采用投影法提取出圖像的投影特征,并據(jù)此計算出圖像的幾何特征,即輸送帶縱向撕裂參數(shù):撕裂長度、寬度和面積。根據(jù)各類型輸送帶圖像投影特征的特點和縱向撕裂參數(shù)設(shè)定識別閾值并規(guī)定縱向撕裂的識別規(guī)則,最終將輸送帶圖像歸為:撕裂狀態(tài)、正常狀態(tài)、劃痕狀態(tài),實現(xiàn)不同狀態(tài)的輸送帶圖像的識別檢測。在MATLAB編程軟件平臺上對采集得到的輸送帶圖像進行預處理和撕裂特征提取與識別處理。實驗結(jié)果表明本文提出的輸送帶縱向撕裂一體化雙目視覺檢測方法能夠識別撕裂與劃痕,能夠預測潛在的撕裂,檢測精確度為96%以上,單幀圖像檢測時間小于21ms,是一種可靠的、實時的在線檢測方法。
[Abstract]:Conveyor is an important transportation tool in modern mining industry. In coal transportation, coal gangue, metal materials and other hard materials are often mixed in coal, which may lead to longitudinal tearing of conveyor belt. Such sudden accidents usually lead to the stoppage of mining equipment and production, resulting in huge economic losses. Therefore, we need real-time, reliable detection of belt longitudinal tear. In recent years, because machine vision can improve detection efficiency and precision, vision detection has become an important research direction in conveyor belt fault detection. Based on the complementary characteristics of machine vision, infrared imaging technology and visible light imaging technology, a binocular vision detection method for longitudinal tear of conveyor belt based on infrared and visible light fusion is proposed. According to the existing problems of the visual detection method of belt longitudinal tear, the design scheme of this method is put forward, which includes three parts: belt image collection, belt image preprocessing, belt image longitudinal tear feature extraction and recognition. Based on infrared and visible light fusion technology, a new integrated binocular vision sensor is proposed to collect infrared and visible light fusion images. The sensing device divides the incident coaxial light from the same lens into infrared light and visible light by means of prism, and enters into two photosensitive chips respectively, which can simultaneously capture infrared and visible light information in the same scene. There is no need for registration before image fusion. In this paper, the imaging principle of the sensor is studied, and its imaging process is simulated on MATLAB to verify its feasibility and effectiveness. Due to the theoretical simulation of the integrated binocular vision sensor proposed in this paper, the infrared image and the visible light image are collected by infrared camera and visible light camera respectively in the experiment part of the conveyor belt image acquisition. Then the infrared and visible image registration fusion, finally achieve the conveyor belt infrared and visible light fusion image acquisition. An image acquisition experiment platform is set up in the laboratory to realize the fusion image acquisition of conveyor belt in tearing state, normal state and scratch state. In order to make the detection more reliable, the belt fusion image acquisition needs to be preprocessed. In this paper, the characteristics of longitudinal tear of conveyor belt are analyzed, and a series of preprocessing is carried out on the image, including removing image noise, enhancing image contrast, highlighting the region of interest in detection, and extracting the information of tearing target. After preprocessing, the visual effect of the image is better, and the tear target is more prominent, which makes a good preparation for the subsequent longitudinal tear feature extraction and recognition. On the basis of the preprocessed images, the projection features of the images are extracted by projection method, and the geometric features of the images are calculated, that is, the longitudinal tearing parameters of the conveyor belt: tear length, width and area. According to the characteristics of projection features of each type of conveyor belt image and the parameters of longitudinal tear, the identification threshold is set and the recognition rule of longitudinal tear is stipulated. Finally, the conveyor belt image is classified as: tearing state, normal state, scratch state, and so on. Realization of different states of the conveyor belt image recognition and detection. The preprocessing, tearing feature extraction and recognition processing of the collected conveyor belt images are carried out on the platform of MATLAB programming software. The experimental results show that the proposed binocular visual detection method for longitudinal tear of conveyor belt can recognize tear and scratch, and can predict potential tear. The detection accuracy is over 96%, and the detection time of single frame image is less than 21ms. it is a reliable method. Real-time online detection method.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD528.1;TP391.41

【參考文獻】

相關(guān)期刊論文 前10條

1 權(quán)亞楠;卜麗靜;武文波;;改進的閾值加權(quán)平均HSV與小波變換圖像融合[J];遼寧工程技術(shù)大學學報(自然科學版);2016年01期

2 王國華;劉瓊;莊家俊;;基于局部特征的車載紅外行人檢測方法研究[J];電子學報;2015年07期

3 李鋒;闞建霞;;基于Sobel算子的圖像快速二維最大熵閾值分割算法[J];計算機科學;2015年S1期

4 周渝人;耿愛輝;張強;陳娟;董宇星;;基于壓縮感知的紅外與可見光圖像融合[J];光學精密工程;2015年03期

5 周靖鴻;周璀;朱建軍;樊東昊;;基于非下采樣輪廓波變換遙感影像超分辨重建方法[J];光學學報;2015年01期

6 王建勛;;煤礦輸送帶傳輸故障實時監(jiān)測技術(shù)[J];工礦自動化;2015年01期

7 周雨薇;楊平呂;陳強;孫權(quán)森;;基于MTF和變分的全色與多光譜圖像融合模型[J];自動化學報;2015年02期

8 李旭陽;易紅偉;齊浩程;;多光譜遙感相機光學系統(tǒng)設(shè)計[J];光子學報;2015年03期

9 張鵬;張志輝;;基于分段直方圖變換的圖像非線性增強[J];光子學報;2014年S1期

10 何海明;齊冬蓮;張國月;張建良;;快速高效去除圖像椒鹽噪聲的均值濾波算法[J];激光與紅外;2014年04期

相關(guān)博士學位論文 前2條

1 卜凡;光學遙感系統(tǒng)的建模仿真及圖像處理技術(shù)研究[D];中國科學院研究生院(西安光學精密機械研究所);2014年

2 李寒;基于機器視覺的目標檢測在精細農(nóng)業(yè)中的關(guān)鍵技術(shù)研究[D];中國農(nóng)業(yè)大學;2014年

相關(guān)碩士學位論文 前10條

1 陽婷;基于視頻監(jiān)控的火災(zāi)探測系統(tǒng)的研究與實現(xiàn)[D];東華大學;2016年

2 彭寶;基于機器視覺輔助駕駛系統(tǒng)中行人實時檢測跟蹤研究[D];東華大學;2016年

3 佟卓遠;基于機器視覺的前方車輛檢測與測距系統(tǒng)設(shè)計[D];哈爾濱工業(yè)大學;2015年

4 朱妍妍;基于機器視覺的膠管表面缺陷檢測系統(tǒng)研究[D];北京理工大學;2015年

5 崔東順;可見光航拍圖像水上橋梁檢測算法研究[D];北京理工大學;2015年

6 何偉;基于小波變換和假彩色的醫(yī)學圖像融合[D];北京理工大學;2015年

7 葛世國;基于數(shù)學形態(tài)學的遙感圖像分割算法研究[D];成都理工大學;2014年

8 狄?guī)?基于FPGA的輸送帶表面超聲檢測系統(tǒng)開發(fā)[D];華東理工大學;2014年

9 陳永亮;灰度圖像的直方圖均衡化處理研究[D];安徽大學;2014年

10 韓博;手持式紅外與可見光圖像融合系統(tǒng)研究[D];南京理工大學;2014年

,

本文編號:2153304

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2153304.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1770b***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com