輸送帶縱向撕裂一體化雙目視覺檢測方法研究
[Abstract]:Conveyor is an important transportation tool in modern mining industry. In coal transportation, coal gangue, metal materials and other hard materials are often mixed in coal, which may lead to longitudinal tearing of conveyor belt. Such sudden accidents usually lead to the stoppage of mining equipment and production, resulting in huge economic losses. Therefore, we need real-time, reliable detection of belt longitudinal tear. In recent years, because machine vision can improve detection efficiency and precision, vision detection has become an important research direction in conveyor belt fault detection. Based on the complementary characteristics of machine vision, infrared imaging technology and visible light imaging technology, a binocular vision detection method for longitudinal tear of conveyor belt based on infrared and visible light fusion is proposed. According to the existing problems of the visual detection method of belt longitudinal tear, the design scheme of this method is put forward, which includes three parts: belt image collection, belt image preprocessing, belt image longitudinal tear feature extraction and recognition. Based on infrared and visible light fusion technology, a new integrated binocular vision sensor is proposed to collect infrared and visible light fusion images. The sensing device divides the incident coaxial light from the same lens into infrared light and visible light by means of prism, and enters into two photosensitive chips respectively, which can simultaneously capture infrared and visible light information in the same scene. There is no need for registration before image fusion. In this paper, the imaging principle of the sensor is studied, and its imaging process is simulated on MATLAB to verify its feasibility and effectiveness. Due to the theoretical simulation of the integrated binocular vision sensor proposed in this paper, the infrared image and the visible light image are collected by infrared camera and visible light camera respectively in the experiment part of the conveyor belt image acquisition. Then the infrared and visible image registration fusion, finally achieve the conveyor belt infrared and visible light fusion image acquisition. An image acquisition experiment platform is set up in the laboratory to realize the fusion image acquisition of conveyor belt in tearing state, normal state and scratch state. In order to make the detection more reliable, the belt fusion image acquisition needs to be preprocessed. In this paper, the characteristics of longitudinal tear of conveyor belt are analyzed, and a series of preprocessing is carried out on the image, including removing image noise, enhancing image contrast, highlighting the region of interest in detection, and extracting the information of tearing target. After preprocessing, the visual effect of the image is better, and the tear target is more prominent, which makes a good preparation for the subsequent longitudinal tear feature extraction and recognition. On the basis of the preprocessed images, the projection features of the images are extracted by projection method, and the geometric features of the images are calculated, that is, the longitudinal tearing parameters of the conveyor belt: tear length, width and area. According to the characteristics of projection features of each type of conveyor belt image and the parameters of longitudinal tear, the identification threshold is set and the recognition rule of longitudinal tear is stipulated. Finally, the conveyor belt image is classified as: tearing state, normal state, scratch state, and so on. Realization of different states of the conveyor belt image recognition and detection. The preprocessing, tearing feature extraction and recognition processing of the collected conveyor belt images are carried out on the platform of MATLAB programming software. The experimental results show that the proposed binocular visual detection method for longitudinal tear of conveyor belt can recognize tear and scratch, and can predict potential tear. The detection accuracy is over 96%, and the detection time of single frame image is less than 21ms. it is a reliable method. Real-time online detection method.
【學位授予單位】:太原理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TD528.1;TP391.41
【參考文獻】
相關(guān)期刊論文 前10條
1 權(quán)亞楠;卜麗靜;武文波;;改進的閾值加權(quán)平均HSV與小波變換圖像融合[J];遼寧工程技術(shù)大學學報(自然科學版);2016年01期
2 王國華;劉瓊;莊家俊;;基于局部特征的車載紅外行人檢測方法研究[J];電子學報;2015年07期
3 李鋒;闞建霞;;基于Sobel算子的圖像快速二維最大熵閾值分割算法[J];計算機科學;2015年S1期
4 周渝人;耿愛輝;張強;陳娟;董宇星;;基于壓縮感知的紅外與可見光圖像融合[J];光學精密工程;2015年03期
5 周靖鴻;周璀;朱建軍;樊東昊;;基于非下采樣輪廓波變換遙感影像超分辨重建方法[J];光學學報;2015年01期
6 王建勛;;煤礦輸送帶傳輸故障實時監(jiān)測技術(shù)[J];工礦自動化;2015年01期
7 周雨薇;楊平呂;陳強;孫權(quán)森;;基于MTF和變分的全色與多光譜圖像融合模型[J];自動化學報;2015年02期
8 李旭陽;易紅偉;齊浩程;;多光譜遙感相機光學系統(tǒng)設(shè)計[J];光子學報;2015年03期
9 張鵬;張志輝;;基于分段直方圖變換的圖像非線性增強[J];光子學報;2014年S1期
10 何海明;齊冬蓮;張國月;張建良;;快速高效去除圖像椒鹽噪聲的均值濾波算法[J];激光與紅外;2014年04期
相關(guān)博士學位論文 前2條
1 卜凡;光學遙感系統(tǒng)的建模仿真及圖像處理技術(shù)研究[D];中國科學院研究生院(西安光學精密機械研究所);2014年
2 李寒;基于機器視覺的目標檢測在精細農(nóng)業(yè)中的關(guān)鍵技術(shù)研究[D];中國農(nóng)業(yè)大學;2014年
相關(guān)碩士學位論文 前10條
1 陽婷;基于視頻監(jiān)控的火災(zāi)探測系統(tǒng)的研究與實現(xiàn)[D];東華大學;2016年
2 彭寶;基于機器視覺輔助駕駛系統(tǒng)中行人實時檢測跟蹤研究[D];東華大學;2016年
3 佟卓遠;基于機器視覺的前方車輛檢測與測距系統(tǒng)設(shè)計[D];哈爾濱工業(yè)大學;2015年
4 朱妍妍;基于機器視覺的膠管表面缺陷檢測系統(tǒng)研究[D];北京理工大學;2015年
5 崔東順;可見光航拍圖像水上橋梁檢測算法研究[D];北京理工大學;2015年
6 何偉;基于小波變換和假彩色的醫(yī)學圖像融合[D];北京理工大學;2015年
7 葛世國;基于數(shù)學形態(tài)學的遙感圖像分割算法研究[D];成都理工大學;2014年
8 狄?guī)?基于FPGA的輸送帶表面超聲檢測系統(tǒng)開發(fā)[D];華東理工大學;2014年
9 陳永亮;灰度圖像的直方圖均衡化處理研究[D];安徽大學;2014年
10 韓博;手持式紅外與可見光圖像融合系統(tǒng)研究[D];南京理工大學;2014年
,本文編號:2153304
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2153304.html