海水提鉀關(guān)鍵設(shè)備的優(yōu)化研究
本文選題:計(jì)算流體力學(xué) + Fluent模擬; 參考:《河北工業(yè)大學(xué)》2015年碩士論文
【摘要】:在農(nóng)業(yè)生產(chǎn)中鉀肥是一種必不可少的肥料,但是陸地中的鉀儲(chǔ)量很低,且不易開采,而海水中鉀的儲(chǔ)藏量十分可觀,因此對(duì)已工業(yè)化的斜發(fā)沸石離子交換法提鉀技術(shù)的研究具有十分重要的意義。硫酸鉀是一種十分優(yōu)質(zhì)的無氯鉀肥,通過對(duì)結(jié)晶器內(nèi)流場(chǎng)的模擬優(yōu)化實(shí)驗(yàn)條件,確保硫酸鉀晶體粒度足夠大。因此本文對(duì)離子交換柱內(nèi)流場(chǎng)和硫酸鉀結(jié)晶器內(nèi)流場(chǎng)分布進(jìn)行了模擬研究。本文利用Fluent軟件對(duì)離子交換柱內(nèi)流場(chǎng)進(jìn)行計(jì)算,并通過改變離子交換柱直徑、入口流速、入口管道直徑、填料高度和進(jìn)口數(shù)對(duì)所得流場(chǎng)速度分布、速度矢量分布、速度范圍分布以及壓力分布進(jìn)行分析,得到不同條件對(duì)交換柱內(nèi)流場(chǎng)的影響,并且確定了最適宜工藝條件:離子交換柱直徑為3 m,入口流速為0.10 m/s,入口管道直徑為0.8 m,填料高度為8 m,并分析結(jié)果可知交換柱選取兩進(jìn)口兩出口利于離子交換過程。完成離子交換柱內(nèi)流場(chǎng)模擬后對(duì)結(jié)晶器流場(chǎng)進(jìn)行模擬。首先,通過實(shí)驗(yàn)結(jié)果與模擬結(jié)果對(duì)比完成了模型驗(yàn)證,證實(shí)了結(jié)晶器流場(chǎng)模擬的合理性。之后改變結(jié)晶器結(jié)構(gòu)、導(dǎo)流筒結(jié)構(gòu)、槳葉轉(zhuǎn)速、槳葉直徑、槳葉位置、固體粒徑進(jìn)行模擬計(jì)算,并分析上述條件對(duì)結(jié)晶器內(nèi)流場(chǎng)分布、湍流動(dòng)能分布、晶體混勻時(shí)間、晶體不均勻度以及攪拌軸功率的影響。結(jié)晶器模擬結(jié)果表明:結(jié)晶器內(nèi)擋板的安裝改變了流體流型,減少了混合時(shí)間,增加了攪拌效率,利于結(jié)晶相的均勻分布。在導(dǎo)流筒直徑為100 cm,高度為110 cm的時(shí)候流體流型規(guī)范,混合時(shí)間短,混合效率高,不均勻度低,攪拌軸功率也不大。攪拌槳轉(zhuǎn)速和直徑的變化對(duì)流體流型以及流線沒有影響,最終攪拌槳最佳轉(zhuǎn)速選取150 rpm、最佳直徑為90 cm。攪拌槳安裝最適位置為H/3,而結(jié)晶器不均勻度會(huì)隨著固體粒徑的增大而變大。
[Abstract]:Potash is an essential fertilizer in agricultural production, but the potassium reserves on land are low and difficult to exploit, and the amount of potassium stored in seawater is considerable. Therefore, it is of great significance to study the technology of ion exchange extraction of potassium from clinoptilolite. Potassium sulfate is a kind of high quality chlorine free potassium fertilizer. By simulating the flow field in the mold, the experimental conditions are optimized to ensure that the crystal size of potassium sulfate is large enough. In this paper, the flow field in ion exchange column and in potassium sulfate crystallizer are simulated. In this paper, the flow field in the ion exchange column is calculated by fluent software, and the velocity distribution and velocity vector distribution of the flow field are analyzed by changing the diameter of the ion exchange column, the inlet velocity, the inlet pipe diameter, the packing height and the inlet number. The velocity range distribution and pressure distribution are analyzed, and the influence of different conditions on the flow field in the exchange column is obtained. The optimum technological conditions are determined as follows: the diameter of ion exchange column is 3 m, the inlet flow rate is 0.10 m / s, the diameter of inlet pipe is 0.8 m, and the height of packing is 8 m. The results show that the selection of two inlet and two outlet of exchange column is beneficial to the process of ion exchange. After the simulation of the flow field in the ion exchange column, the flow field of the crystallizer is simulated. First, the model verification is completed by comparing the experimental results with the simulation results, and the rationality of the flow field simulation of the crystallizer is verified. Then the mold structure, flow tube structure, blade speed, blade diameter, blade position and solid particle size are simulated and calculated. The distribution of flow field, turbulent kinetic energy and crystal mixing time are analyzed. The effect of crystal unevenness and stirring shaft power. The simulation results show that the installation of the baffle in the mold changes the fluid flow pattern, reduces the mixing time, increases the stirring efficiency and facilitates the uniform distribution of the crystalline phase. When the diameter of the tube is 100 cm and the height is 110 cm, the mixing time is short, the mixing efficiency is high, the inhomogeneity is low, and the mixing axis power is small. The change of speed and diameter of the impeller has no effect on the flow pattern and streamline. The optimum speed of the impeller is 150rpm and the optimum diameter is 90cm. The optimum position of impeller installation is H / 3, and the inhomogeneity of the crystallizer increases with the increase of solid particle size.
【學(xué)位授予單位】:河北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ440.53
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 向美春;陸慶生;;淺談曼海姆法硫酸鉀生產(chǎn)工藝與質(zhì)量控制[J];企業(yè)技術(shù)開發(fā);2014年08期
2 黃高強(qiáng);亓昭英;武良;李宇軒;張衛(wèi)峰;;我國鉀肥產(chǎn)業(yè)發(fā)展形勢(shì)與建議[J];現(xiàn)代化工;2013年12期
3 張繼光;梁洪波;申國明;董建新;張清明;陳向東;吳元華;查婷;于海容;;連續(xù)多年施用硫酸鉀肥對(duì)煙田土壤及煙株硫素含量的影響[J];中國煙草科學(xué);2013年06期
4 余金偉;馮曉鋒;;計(jì)算流體力學(xué)發(fā)展綜述[J];現(xiàn)代制造技術(shù)與裝備;2013年06期
5 苑海青;;綜述我國硫酸鉀生產(chǎn)狀況與生產(chǎn)前景展望[J];中國石油和化工標(biāo)準(zhǔn)與質(zhì)量;2011年09期
6 董占能;鄧來;羅平;付廷棟;;磷石膏一步法制取硫酸鉀工藝研究[J];化工科技;2011年03期
7 黃理承;韓效釗;陸亞玲;王忠兵;李煒;;硫酸分解鉀長(zhǎng)石的探討[J];安徽化工;2011年01期
8 程玉剛;張忠輝;蘭堯中;;我國鉀鹽制鉀肥開發(fā)利用現(xiàn)狀[J];現(xiàn)代礦業(yè);2011年02期
9 趙元藝;焦鵬程;李波濤;錢作華;;中國可溶性鉀鹽資源地質(zhì)特征與潛力評(píng)價(jià)[J];礦床地質(zhì);2010年04期
10 孫愛文;張衛(wèi)峰;杜芬;高利偉;張福鎖;陳新平;;中國鉀資源及鉀肥發(fā)展戰(zhàn)略[J];現(xiàn)代化工;2009年09期
,本文編號(hào):2059880
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2059880.html