基于納米粒子雜化網(wǎng)絡(luò)的PVDF導(dǎo)熱復(fù)合材料制備及多功能化調(diào)控
本文選題:導(dǎo)熱復(fù)合材料 + 聚偏氟乙烯 ; 參考:《西南交通大學(xué)》2017年碩士論文
【摘要】:填充型導(dǎo)熱高分子材料是將導(dǎo)熱填料添加到高分子基體中制備的具有高導(dǎo)熱系數(shù)的復(fù)合材料。填充型導(dǎo)熱高分子制備方法簡(jiǎn)單、成本低廉并且在電子電氣和微電子封裝領(lǐng)域具有廣闊的應(yīng)用前景,近年來(lái)受到廣泛的關(guān)注。常見(jiàn)的導(dǎo)熱填料包括石墨、碳納米管(Carbon nanotubes,CNTs)、石墨烯納米片(Graphene nanoplatelets,GNPs)等導(dǎo)電填料和氮化硼(Boron nitride,BN)、氮化鋁(Alumium nitride,AlN)、氧化鋁(Alumium oxide,Al2O3)等絕緣陶瓷填料。將兩種不同尺寸、不同維度的填料互配成雜化填料填充聚合物是制備導(dǎo)熱高分子最有效、最簡(jiǎn)單的方法之一。但是,隨著電子信息領(lǐng)域不斷發(fā)展,具有單一導(dǎo)熱性能的復(fù)合材料已經(jīng)無(wú)法滿足市場(chǎng)需求,因此開(kāi)發(fā)具有多功能性的導(dǎo)熱復(fù)合材料具有十分重要的意義。本論文針對(duì)填料雜化網(wǎng)絡(luò)致密程度對(duì)聚偏氟乙烯(Polyvinylidene fluoride,PVDF)導(dǎo)熱性能的影響開(kāi)展研究工作。首先研究了導(dǎo)電雜化填料(CNTs/GNPs)對(duì)PVDF導(dǎo)熱和導(dǎo)電性能影響。通過(guò)固定一種填料含量同時(shí)改變另一種填料含量,探究了不同雜化網(wǎng)絡(luò)對(duì)復(fù)合材料導(dǎo)熱導(dǎo)電性能的影響。此外,通過(guò)調(diào)控絕緣填料BN含量和尺寸,控制導(dǎo)電填料CNTs的分散和網(wǎng)絡(luò)結(jié)構(gòu),研究了制備具有高導(dǎo)熱系數(shù)和高介電常數(shù)復(fù)合材料的最佳工藝。主要研究成果如下:(1)通過(guò)溶液-熔融兩步加工法將GNPs和CNTs引入到PVDF中,制備了三元納米復(fù)合材料。通過(guò)對(duì)復(fù)合材料結(jié)晶行為分析發(fā)現(xiàn),GNPs和CNTs對(duì)PVDF都有明顯的成核作用,但是雜化網(wǎng)絡(luò)對(duì)PVDF結(jié)晶度幾乎沒(méi)影響。通過(guò)流變行為和微觀形貌表征以及導(dǎo)熱性能測(cè)試發(fā)現(xiàn),少量GNPs加入到PVDF/CNT-x中,由于GNPs對(duì)CNTs的體積排除作用,使得CNTs團(tuán)聚更嚴(yán)重;進(jìn)一步通過(guò)理論模擬計(jì)算發(fā)現(xiàn)由于CNTs團(tuán)聚,CNTs間接觸熱阻略有增大。而流變結(jié)果顯示,少量GNPs加入對(duì)復(fù)合材料網(wǎng)絡(luò)致密程度幾乎沒(méi)有影響,此時(shí)復(fù)合材料導(dǎo)熱系數(shù)提升較小;但是少量CNTs加入PVDF/GNP-x中,CNTs和GNPs能形成三維雜化網(wǎng)絡(luò),此時(shí)復(fù)合材料的模量顯著提升,低頻處有更大的平臺(tái),說(shuō)明此時(shí)材料內(nèi)部能形成更致密的雜化網(wǎng)絡(luò),因此復(fù)合材料導(dǎo)熱系數(shù)顯著增加,導(dǎo)熱協(xié)同效率也更高。通過(guò)對(duì)電導(dǎo)率測(cè)試發(fā)現(xiàn),CNTs在導(dǎo)電網(wǎng)絡(luò)中起到主導(dǎo)作用,但是少量CNTs加入PVDF/GNP-x中,材料的電導(dǎo)率提升比少量GNPs加入到PVDF/CNT-x中更明顯,有更高的協(xié)同效率。(2)通過(guò)向PVDF中引入導(dǎo)電填料CNTs和類石墨烯絕緣填料BN,成功制備具有高導(dǎo)熱系數(shù)的三元納米復(fù)合材料。結(jié)晶行為研究表明,BN和CNTs對(duì)PVDF結(jié)晶都有成核作用,并且同時(shí)加入BN和CNTs時(shí),結(jié)晶度會(huì)隨著BN含量增加而增大。通過(guò)微觀形貌分析、介電性能和電導(dǎo)率測(cè)試發(fā)現(xiàn)少量的BN對(duì)CNTs有分散作用,復(fù)合材料的電導(dǎo)率明顯提升,此時(shí)由于CNTs與PVDF之間有更多的界面極化,并且CNTs之間能形成更多微電容結(jié)構(gòu),因此復(fù)合材料介電常數(shù)顯著提升;但是大量的BN對(duì)CNTs的網(wǎng)絡(luò)會(huì)產(chǎn)生位阻效應(yīng),致使CNTs導(dǎo)電網(wǎng)絡(luò)破壞,復(fù)合材料電導(dǎo)率和介電常數(shù)顯著降低。流變行為分析發(fā)現(xiàn),當(dāng)BN含量大于10 wt%時(shí),復(fù)合材料內(nèi)部才能形成網(wǎng)絡(luò)結(jié)構(gòu)。但是將CNTs加入PVDF/BN-x中,即使BN含量為1 wt%,復(fù)合材料中也能形成致密的三維網(wǎng)絡(luò),網(wǎng)絡(luò)致密程度提升是導(dǎo)熱性能提高的主要原因。(3)通過(guò)調(diào)控BN尺寸,將三種不同尺寸的BN和CNTs組成雜化填料引入PVDF中,制備了三種三元納米復(fù)合材料。通過(guò)形貌表征、流變行為和電導(dǎo)率測(cè)試分析填料網(wǎng)絡(luò)變化,并對(duì)材料導(dǎo)熱性能和介電性能進(jìn)行測(cè)試后發(fā)現(xiàn):對(duì)于PVDF/aBN-x/CNT,少量CNTs穿插在納米級(jí)的aBN中,一方面aBN有分散CNTs的作用,因此PVDF/aBN-x/CNT的模量相比于PVDF/aBN-x提升最大,在低頻處對(duì)頻率的依賴性最小,網(wǎng)絡(luò)最致密;另一方面aBN吸附于CNTs表面,使得CNTs之間難以直接搭接,電導(dǎo)率最低,介電性能也最差。此時(shí),雖然樣品有最致密網(wǎng)絡(luò),但是由于納米級(jí)aBN間以及CNTs間較大的熱阻,使得材料的導(dǎo)熱系數(shù)最低。對(duì)于PVDF/bBN-x,bBN徑厚比最大,在基體中最容易形成導(dǎo)熱網(wǎng)絡(luò),樣品導(dǎo)熱系數(shù)也最大。對(duì)于PVDF/bBN-x/CNT,一方面由于bBN體積排除作用可以分散CNTs,另一方面CNTs也能增大熔體粘度,局部剪切應(yīng)力變化促進(jìn)bBN形成網(wǎng)絡(luò),使得復(fù)合材料中形成更多的導(dǎo)熱通路,因此同等填料含量下該組樣品有最大的導(dǎo)熱系數(shù)。對(duì)于PVDF/cBN-x/CNT,cBN片層大,難以形成網(wǎng)絡(luò),對(duì)CNTs只有體積排除作用,使得CNTs網(wǎng)絡(luò)更致密,因此樣品的電導(dǎo)率最大,介電常數(shù)也最高,模量提升也比bBN更明顯。但是,由于對(duì)導(dǎo)熱貢獻(xiàn)的BN片層難以形成網(wǎng)絡(luò),因此樣品的導(dǎo)熱系數(shù)相比于含bBN樣品更低。
[Abstract]:Filled thermal conductive polymer material is a composite material with high thermal conductivity, which is prepared by adding thermal conductive filler to polymer matrix. The preparation method of filled type conductive polymer is simple, low cost and has broad application prospects in electronic and microelectronic packaging fields. Materials include graphite, carbon nanotube (Carbon nanotubes, CNTs), graphene nanoscale (Graphene nanoplatelets, GNPs) and other conductive filler and boron nitride (Boron nitride, BN), aluminum nitride (Alumium nitride, AlN), aluminum oxide, and other insulating ceramic filler. Two different dimensions, different dimensions of fillers are mixed into hybrid fillers. Polymer is one of the most effective and simple methods for the preparation of thermal conductive polymers. However, with the continuous development of the field of electronic information, the composite materials with single thermal conductivity are unable to meet the demand of the market. Therefore, it is of great significance to develop a multi-functional thermal conductive composite material. The influence of density on the thermal conductivity of polyvinylidene fluoride (Polyvinylidene fluoride, PVDF) was studied. First, the effect of conductive hybrid filler (CNTs/GNPs) on the thermal conductivity and conductivity of PVDF was studied. The thermal conductivity and conductivity of different hybrid networks were investigated by fixing the content of a kind of filler and changing the content of another kind of filler. In addition, by controlling the BN content and size of the insulating filler and controlling the dispersion and network structure of the conductive filler CNTs, the optimum technology for the preparation of composite materials with high thermal conductivity and high dielectric constant is studied. The main research results are as follows: (1) three yuan is prepared by introducing GNPs and CNTs into PVDF through the solution melting two step processing method. By analyzing the crystallization behavior of the composites, it was found that both GNPs and CNTs had obvious nucleation effect on PVDF, but the hybrid network had little effect on the crystallinity of PVDF. Through the rheological behavior, micromorphology and thermal conductivity testing, a small amount of GNPs was added to PVDF/CNT-x, and the GNPs has been excluded for the volume of CNTs due to GNPs. It is used to make the CNTs reunion more serious; further through theoretical simulation, it is found that the indirect thermal resistance of CNTs increases slightly because of CNTs agglomeration. And the rheological results show that a small amount of GNPs addition has little effect on the density of the composite network, and the thermal conductivity of the composite is less promoted at this time, but a small amount of CNTs is added to PVDF/GNP-x, CNTs and GNPs. A three-dimensional hybrid network can be formed. At this time, the modulus of the composite material increases significantly and the low frequency has a larger platform. It shows that the material can form a more compact hybrid network at this time. Therefore, the thermal conductivity of the composite increases significantly and the thermal conductivity is more efficient. The conductivity test shows that CNTs plays a leading role in the conductive network. However, a small amount of CNTs added to PVDF/GNP-x was more obvious than a small amount of GNPs added to PVDF/CNT-x, with higher synergistic efficiency. (2) a three element nanocomposite with high thermal conductivity was successfully prepared by introducing CNTs and graphene insulating filler BN into PVDF. Crystallization behavior studies showed that BN and CNTs pairs were found. The crystallinity of PVDF has nucleation, and when BN and CNTs are added, the crystallinity increases with the increase of the BN content. Through the analysis of the microstructure, the dielectric and electrical conductivity tests show that a small amount of BN has a dispersion effect on CNTs, and the conductivity of the composite improves obviously, and at this time, there are more interface polarization between CNTs and PVDF, and CNTs. More micro capacitance structure can be formed between them, so the dielectric constant of the composite increases significantly, but a large number of BN will have a hindrance effect on the CNTs network, resulting in the destruction of the CNTs conductive network, and the conductivity and dielectric constant of the composite significantly decrease. The rheological behavior analysis shows that the network can form a net when the content of BN is greater than 10 wt%. However, if CNTs is added to PVDF/BN-x, even if the content of BN is 1 wt%, a compact three-dimensional network can be formed in the composite. The increase in density of the network is the main reason for the improvement of thermal conductivity. (3) three kinds of three element nanocomposites are prepared by introducing three different sizes of BN and CNTs into PVDF by adjusting the size of BN. Material. Through the morphology characterization, rheological behavior and conductivity test and analysis of the change of the packing network, and after testing the thermal conductivity and dielectric properties of the material, it is found that for PVDF/aBN-x/CNT, a small amount of CNTs is inserted in the nano scale aBN, on the one hand, aBN has the effect of dispersing CNTs, so the modulus of PVDF/aBN-x/CNT is the largest than that of PVDF/aBN-x. In the low frequency, the dependence of frequency on the frequency is the smallest and the network is the densest; on the other hand, aBN is adsorbed on the surface of CNTs, which makes the CNTs difficult to connect directly, the conductivity is the lowest, and the dielectric property is the worst. At this time, the sample has the most dense network, but the thermal conductivity is the lowest because of the nanometer aBN and the larger thermal resistance between CNTs. For P VDF/bBN-x, bBN has the largest diameter thickness ratio, and the heat conduction network is the most easy to form in the matrix, and the thermal conductivity of the sample is also the largest. For PVDF/bBN-x/CNT, on the one hand, the bBN volume exclusion can disperse CNTs, on the other hand, CNTs can increase the viscosity of the melt. The local shear stress change promotes the bBN formation network, making the composites more guided. Heat path, therefore, with the same filler content, the sample has the maximum thermal conductivity. For PVDF/cBN-x/CNT, the cBN layer is large, it is difficult to form a network, the only volume exclusion of CNTs makes the CNTs network more compact, so the conductivity of the sample is maximum, the dielectric constant is the highest and the modulus is more obvious than that of bBN. However, because of the contribution to the heat conduction The BN layer is difficult to form a network, so the thermal conductivity of the sample is lower than that of the sample containing bBN.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB332
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馬海紅;史鐵鈞;宋秋生;;PMMA/SiO_2-TiO_2雜化纖維的制備與表征[J];高分子材料科學(xué)與工程;2009年11期
2 郁建燦;崔元靖;王民權(quán);錢國(guó)棟;;無(wú)機(jī)-有機(jī)雜化二階非線性光學(xué)材料研究進(jìn)展[J];硅酸鹽學(xué)報(bào);2009年02期
3 宋秋生;史鐵鈞;馬海紅;;PVA/SiO_2/TiO_2雜化纖維的制備與表征[J];高分子材料科學(xué)與工程;2009年05期
4 馬海紅;江紀(jì)峰;張虎;陸昱;錢進(jìn);;PVA-PEG/SiO_2-TiO_2雜化纖維的制備與表征[J];化工新型材料;2009年11期
5 馬海紅;周浩;賀力;于維;劉發(fā)國(guó);陶俊;;PEG/SiO_2-TiO_2雜化纖維的制備與表征[J];材料導(dǎo)報(bào);2010年22期
6 王純;高會(huì)元;程慧敏;;新型雜化炭分子篩膜研究進(jìn)展[J];化工新型材料;2013年05期
7 劉登良;;從“雜化”說(shuō)開(kāi)去——材料創(chuàng)新的一種重要途徑[J];中國(guó)涂料;2006年07期
8 何雪梅;;殼聚糖基雜化功能材料制備新進(jìn)展[J];化工時(shí)刊;2009年12期
9 王宏偉;;新型雜化光聚合體系[J];信息記錄材料;2011年03期
10 吳翠明;肖新樂(lè);崔鵬;徐銅文;;雜化離子膜的制備和應(yīng)用[J];化學(xué)進(jìn)展;2010年10期
相關(guān)會(huì)議論文 前10條
1 隋玉龍;閆冰;;具有強(qiáng)鍵連接的鋱綠光雜化分子材料[A];2005年中國(guó)固體科學(xué)與新材料學(xué)術(shù)研討會(huì)專輯[C];2005年
2 李晶晶;鄧聯(lián)東;邢金峰;董岸杰;;二氧化鈦陽(yáng)離子雜化電泳納米粒的制備與表征[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
3 孟慶國(guó);宋梓瑜;張亮亮;孫道峰;;基于1,3,5-苯三甲酸的三維鋇無(wú)機(jī)-有機(jī)雜化框架物的合成與表征[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第05分會(huì):無(wú)機(jī)化學(xué)[C];2014年
4 吳波;余萍;崔燦;吳名;張洋;劉磊;王彩霞;卓仁禧;黃世文;;含葉酸還原敏感性脂質(zhì)-聚合物雜化納米粒子用于阿霉素靶向輸送[A];2013年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集——主題H:醫(yī)用高分子[C];2013年
5 邵志東;江曉;梁云霄;;一種新型無(wú)機(jī)-有機(jī)雜化磷酸鹽的合成與表征[A];第15屆全國(guó)晶體生長(zhǎng)與材料學(xué)術(shù)會(huì)議論文集[C];2009年
6 Kimihiro Matsukawa;;光功能無(wú)機(jī)/有機(jī)雜化光學(xué)材料(英文)[A];第九屆中國(guó)輻射固化年會(huì)論文集[C];2008年
7 趙寧;戴珍;劉海云;黎白鈺;馬軍;王真;徐堅(jiān);;有機(jī)-無(wú)機(jī)雜化功能材料研究—聚倍半硅氧烷分子雜化與應(yīng)用[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
8 童朝健;王靜;熊兆賢;薛昊;周建華;;有機(jī)生色團(tuán)摻雜有機(jī)/無(wú)機(jī)復(fù)合基質(zhì)非線性光學(xué)材料的制備與性能[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(1)[C];2007年
9 柴志剛;李琦;徐東升;;多相均相雜化體系用于二氧化碳光催化還原[A];中國(guó)化學(xué)會(huì)第29屆學(xué)術(shù)年會(huì)摘要集——第37分會(huì):能源納米科學(xué)與技術(shù)[C];2014年
10 萬(wàn)穎;馮翠苗;錢旭芳;李和興;趙東元;;雜化介孔碳分子篩載體的合成[A];第五屆全國(guó)環(huán)境催化與環(huán)境材料學(xué)術(shù)會(huì)議論文集[C];2007年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)記者 金勇;朱美芳:悠游纖維世界[N];中國(guó)婦女報(bào);2011年
相關(guān)博士學(xué)位論文 前10條
1 堯華;胺類固化劑結(jié)構(gòu)與環(huán)氧聚硅氧烷雜化涂層性能關(guān)系的研究[D];上海大學(xué);2015年
2 陳召來(lái);水相加工的聚合物納米晶雜化太陽(yáng)能電池的性能優(yōu)化及機(jī)理研究[D];吉林大學(xué);2016年
3 宋玉敏;A_2B_2O_7(A=Cd,Sr;B=Nb,Ta)功能材料物性的第一性原理研究[D];昆明理工大學(xué);2015年
4 陳文娟;銀—半胱氨酸雜化納米線合成及生物傳感研究[D];福州大學(xué);2014年
5 麻伍軍;石墨烯雜化纖維及其柔性超級(jí)電容器研究[D];東華大學(xué);2016年
6 劉俊生;新型荷電雜化(鑲嵌)膜(材料)的制備與表征[D];中國(guó)科學(xué)技術(shù)大學(xué);2006年
7 崔元靖;無(wú)機(jī)—有機(jī)雜化二階非線性光學(xué)材料的設(shè)計(jì)、合成與性能研究[D];浙江大學(xué);2005年
8 殷允杰;基于原位修飾雜化硅溶膠織物表面功能改性[D];江南大學(xué);2013年
9 馬海紅;聚合物/SiO_2-TiO_2雜化纖維材料的研究[D];合肥工業(yè)大學(xué);2009年
10 林松柏;有機(jī)樹脂/二氧化硅雜化高吸水性材料的研究[D];天津大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 馬前;動(dòng)態(tài)凝膠的交叉快速愈合功能及其宏觀雜化體的制備與機(jī)理研究[D];華南理工大學(xué);2015年
2 沈鑫磊;硅/有機(jī)物雜化太陽(yáng)能電池的制備及性能研究[D];浙江大學(xué);2015年
3 許亞南;Cu/SPAES/PES雜化抗菌超濾膜制備和性能表征[D];南京理工大學(xué);2015年
4 許巧靜;硅基雜化光伏電池的界面調(diào)控及電極層修飾研究[D];蘇州大學(xué);2015年
5 胡四維;基于吡咯并吡咯烷酮結(jié)構(gòu)的窄帶隙小分子液晶調(diào)控P3HT/ZnO雜化本體異質(zhì)結(jié)微觀形貌及其性能優(yōu)化[D];南昌大學(xué);2015年
6 夏周慧;納米結(jié)構(gòu)金表面等離子體效應(yīng)在硅基雜化太陽(yáng)能電池中的應(yīng)用[D];蘇州大學(xué);2015年
7 史彥龍;基于POSS無(wú)機(jī)/有機(jī)雜化光電材料的合成及性質(zhì)研究[D];蘭州交通大學(xué);2015年
8 張丹丹;巰基—烯/自由基混雜光固化大豆油基納米復(fù)合涂層制備與性能研究[D];南昌航空大學(xué);2015年
9 趙偉剛;結(jié)合位點(diǎn)確定的高分子雜化體的制備及其功能研究[D];蘭州交通大學(xué);2015年
10 宋曉凱;基于仿生硅化/鈣化設(shè)計(jì)制備雜化凝膠微球及固定化酶研究[D];天津大學(xué);2014年
,本文編號(hào):2015105
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2015105.html