Incoloy 825鎳基高溫合金低周疲勞行為研究
本文選題:Incoloy + 825鎳基高溫合金; 參考:《沈陽(yáng)工業(yè)大學(xué)》2017年碩士論文
【摘要】:鎳基高溫合金具有優(yōu)異的抗高溫疲勞性能、抗氧化性能以及耐應(yīng)力腐蝕性能,故廣泛應(yīng)用于機(jī)械裝備、航空航天、石油化工等領(lǐng)域,并被用于制作工業(yè)用燃?xì)廨啓C(jī)葉片等承受?chē)?yán)苛工作條件的關(guān)鍵工程構(gòu)件。疲勞是鎳基高溫合金工程構(gòu)件的主要失效形式之一。基于此,本文通過(guò)在室溫、650℃和760℃下進(jìn)行外加總應(yīng)變幅控制的低周疲勞實(shí)驗(yàn),對(duì)Incoloy 825鎳基高溫合金基體及其焊接接頭的低周疲勞行為進(jìn)行了研究,確定了合金的循環(huán)應(yīng)力響應(yīng)行為、低周疲勞壽命行為和循環(huán)應(yīng)力-應(yīng)變行為,并且確定出不同溫度下的應(yīng)變疲勞參數(shù),同時(shí)利用透射電子顯微鏡(TEM)和掃描電子顯微鏡(SEM)對(duì)疲勞變形后的位錯(cuò)亞結(jié)構(gòu)和低周疲勞斷口形貌進(jìn)行了分析,以期為Incoloy 825鎳基高溫合金工程構(gòu)件的抗疲勞設(shè)計(jì)提供可靠的理論依據(jù)。低周疲勞實(shí)驗(yàn)結(jié)果表明:室溫下,Incoloy 825鎳基高溫合金基體在低周疲勞變形初期呈現(xiàn)出循環(huán)應(yīng)變硬化,而在低周疲勞變形后期則呈現(xiàn)出循環(huán)應(yīng)變軟化;650℃下,Incoloy 825鎳基高溫合金基體在低周疲勞變形初期呈現(xiàn)出循環(huán)應(yīng)變硬化,而在低周疲勞變形后期則呈現(xiàn)出循環(huán)穩(wěn)定或者循環(huán)應(yīng)變硬化;760℃下,Incoloy 825鎳基高溫合金基體在低周疲勞變形初期呈現(xiàn)出循環(huán)應(yīng)變硬化,而在低周疲勞變形后期則呈現(xiàn)出循環(huán)應(yīng)變軟化或者循環(huán)穩(wěn)定。室溫下,Incoloy 825鎳基高溫合金焊接接頭在低周疲勞變形初期呈現(xiàn)出循環(huán)穩(wěn)定、循環(huán)應(yīng)變硬化或者循環(huán)應(yīng)變軟化,而在低周疲勞變形后期則呈現(xiàn)出循環(huán)應(yīng)變軟化;760℃下,Incoloy 825鎳基高溫合金焊接接頭在低周疲勞變形初期呈現(xiàn)出循環(huán)應(yīng)變硬化,而在低周疲勞變形后期則呈現(xiàn)出循環(huán)應(yīng)變軟化。當(dāng)外加總應(yīng)變幅相同時(shí),Incoloy 825鎳基高溫合金基體在室溫下呈現(xiàn)出最長(zhǎng)的低周疲勞壽命,在760?C下則呈現(xiàn)出最短的低周疲勞壽命,而Incoloy 825鎳基高溫合金焊接接頭在室溫下的低周疲勞壽命較其在760℃下的低周疲勞壽命更長(zhǎng)。在相同溫度下,Incoloy 825鎳基高溫合金基體的低周疲勞壽命均長(zhǎng)于Incoloy 825鎳基高溫合金焊接接頭的低周疲勞壽命。在不同溫度下,Incoloy 825鎳基高溫合金基體及其焊接接頭的塑性應(yīng)變幅、彈性應(yīng)變幅與斷裂時(shí)的載荷反向周次之間均分別呈現(xiàn)出單斜率線性關(guān)系,并分別服從Coffin-Manson公式和Basquin公式。此外,在不同實(shí)驗(yàn)溫度下,Incoloy 825鎳基高溫合金基體及其焊接接頭的循環(huán)應(yīng)力-應(yīng)變曲線均呈現(xiàn)出單斜率線性行為。利用透射電子顯微鏡對(duì)Incoloy 825鎳基高溫合金在不同溫度和外加總應(yīng)變幅下低周疲勞變形后的位錯(cuò)亞結(jié)構(gòu)進(jìn)行的觀察與分析結(jié)果表明,其主要疲勞變形機(jī)制為平面滑移。低周疲勞變形時(shí),合金中可形成亞晶、位錯(cuò)陣列及胞狀亞結(jié)構(gòu),并可觀察到位錯(cuò)塞積群以及平行分布的位錯(cuò)墻與滑移帶。利用掃描電子顯微鏡對(duì)Incoloy 825鎳基高溫合金在不同條件下的低周疲勞斷口形貌進(jìn)行的觀察與分析結(jié)果表明,合金的疲勞裂紋均以穿晶方式萌生與擴(kuò)展。
[Abstract]:Nickel base superalloy has excellent resistance to high temperature fatigue, antioxidation and stress corrosion resistance, so it should be widely used in mechanical equipment, aerospace, petrochemical and other fields, and is used to make industrial gas turbine blades and other key engineering components to withstand harsh working conditions. Fatigue is a nickel base superalloy engineering component Based on this, the low cycle fatigue behavior of the Incoloy 825 nickel base superalloy matrix and its welded joint was studied by the low cycle fatigue test at room temperature, 650 and 760 C. The cyclic stress response behavior, low cycle fatigue life behavior and cycle of the alloy were determined. Stress strain behavior and strain fatigue parameters at different temperatures are determined, and transmission electron microscope (TEM) and scanning electron microscope (SEM) are used to analyze the dislocation substructure and low cycle fatigue fracture morphology after fatigue deformation, in order to provide reliability for the fatigue design of Incoloy 825 nickel base superalloy engineering components. The results of low cycle fatigue test show that at room temperature, the matrix of Incoloy 825 nickel base superalloy presents cyclic strain hardening at the early stage of low cycle fatigue deformation, while the cyclic strain softens in the late stage of low cycle fatigue deformation. At 650, the Incoloy 825 nickel base high temperature gold alloy matrix presents a cyclic strain at the early stage of low cycle fatigue deformation. At 760 centigrade, the matrix of Incoloy 825 nickel base superalloy presents a cyclic strain hardening at the early stage of low cycle fatigue deformation, while at the late stage of low fatigue deformation, the cyclic strain is softened or circulated. At room temperature, the Incoloy 825 nickel base is high. In the early stage of low cycle fatigue deformation, the welded joints of the warm alloy welded joints showed a cyclic stability, the cyclic strain hardening or the cyclic strain softened, while the cyclic strain softened in the late period of low cycle fatigue deformation. At 760, the Incoloy 825 nickel base superalloy welded joint showed a cyclic strain hardening at the early stage of low cycle fatigue deformation, and at the low cycle fatigue fatigue. At the same time, the Incoloy 825 nickel base superalloy matrix exhibits the longest low cycle fatigue life at room temperature and the shortest low cycle fatigue life at 760? C, while the low cycle fatigue life of the Incoloy 825 nickel base superalloy welded joint at room temperature is 760. At the same temperature, the low cycle fatigue life of the Incoloy 825 nickel base superalloy substrate is longer than that of the Incoloy 825 nickel base superalloy welded joint at the same temperature. At different temperatures, the plastic strain amplitude, elastic strain amplitude and fracture time of the Incoloy 825 nickel base superalloy matrix and its welding joint are made at different temperatures. The linear relationship between the load reverse cycles and the Coffin-Manson formula and the Basquin formula are presented respectively. At different experimental temperatures, the cyclic stress strain curves of the Incoloy 825 nickel base superalloy matrix and its welded joint show the linear behavior of the monoclinic rate. The transmission electron microscope is used for the Inco. The observation and analysis of dislocation substructures of loy 825 nickel base superalloy at low cycle fatigue and deformation at different temperatures and additional amplitudes show that the main mechanism of the fatigue deformation is plane slip. In the low cycle fatigue deformation, subgrains, dislocation arrays and cell substructures can be formed in the alloy, and the wrong plug group can be observed. The dislocation walls and slip zones of parallel distribution are observed and analyzed by scanning electron microscopy (SEM) for low cycle fatigue fracture morphology of Incoloy 825 nickel base superalloy under different conditions. The results show that the fatigue cracks in the alloy are all sprout and expanding in the mode of transgranular.
【學(xué)位授予單位】:沈陽(yáng)工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TG132.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王媛媛;陳立佳;王寶森;張思倩;;Inconel 625合金的室溫低周疲勞與斷裂行為[J];沈陽(yáng)工業(yè)大學(xué)學(xué)報(bào);2016年02期
2 佴啟亮;董建新;張麥倉(cāng);姚志浩;;多組織因素對(duì)GH4738合金裂紋擴(kuò)展速率的交互影響[J];金屬學(xué)報(bào);2016年02期
3 張仕朝;;DZ408合金低周疲勞行為[J];航空材料學(xué)報(bào);2016年01期
4 安金嵐;王磊;劉楊;胥國(guó)華;趙光普;;長(zhǎng)期時(shí)效對(duì)GH4169合金組織演化及低周疲勞行為的影響[J];金屬學(xué)報(bào);2015年07期
5 楊俊峰;范芳雄;;825合金熱加工過(guò)程相變化規(guī)律研究[J];材料開(kāi)發(fā)與應(yīng)用;2015年03期
6 任維新;劉彬;張禮峰;胡治寧;任維麗;;鎳基高溫合金中γ/γ’兩相晶格錯(cuò)配度的研究進(jìn)展[J];上海金屬;2015年02期
7 水麗;劉平;;一種鎳基單晶合金高溫低周疲勞行為研究(英文)[J];稀有金屬材料與工程;2015年02期
8 Zhenxue Shi;Xiaoguang Wang;Shizhong Liu;Jiarong Li;;Low cycle fatigue properties and microstructure evolution at 760℃ of a single crystal superalloy[J];Progress in Natural Science:Materials International;2015年01期
9 郭寶會(huì);;Nb-Si-Cr基超高溫合金組織的研究進(jìn)展[J];熱加工工藝;2015年02期
10 王歡;袁超;郭建亭;秦鶴勇;;GH4698合金的疲勞裂紋擴(kuò)展行為[J];中國(guó)有色金屬學(xué)報(bào);2015年01期
,本文編號(hào):2001322
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/2001322.html