功能性纖維素氣凝膠的制備及其在水凈化中的應(yīng)用研究
本文選題:纖維素 + 功能化改性 ; 參考:《浙江理工大學(xué)》2017年碩士論文
【摘要】:在世界各國均面臨著石化資源日益匱乏和環(huán)境問題日益惡化的背景下,利用豐富的農(nóng)林生物質(zhì)資源,開發(fā)環(huán)境友好、可循環(huán)利用的生物質(zhì)基功能材料,最大限度地替代或部分替代石油基材料并應(yīng)用于各個領(lǐng)域,具有重要的理論意義和實(shí)際應(yīng)用價值。纖維素作為地球上含量最豐富的天然高分子材料,具有可再生、生物可降解、生物相容、機(jī)械性能好、易化學(xué)改性等諸多優(yōu)異性能,因此,采用綠色化學(xué)技術(shù),研究和開發(fā)纖維素基功能材料一直是化工、材料、能源環(huán)境、生物醫(yī)藥等諸多領(lǐng)域的重要研究課題。本論文以廢棄棉纖維為纖維素原料,通過綠色、溫和、簡單的工藝技術(shù)制備了一種低密度、高孔隙率的纖維素氣凝膠,考察了不同纖維素濃度對其形態(tài)結(jié)構(gòu)、物化性質(zhì)等的影響。在此基礎(chǔ)上,利用甲基三氯硅烷(MTCS)對纖維素氣凝膠進(jìn)行化學(xué)改性,制備了疏水性纖維素氣凝膠,研究了疏水性纖維素氣凝膠的油水分離性能;另一方面,采用化學(xué)原位沉積法制備了纖維素/氧化石墨烯/氧化亞銅(CE/GO/Cu_2O)三元雜化氣凝膠,進(jìn)一步研究了三元雜化纖維素氣凝膠對有機(jī)染料甲基橙的可見光催化降解性能。論文研究結(jié)果如下:(1)纖維素氣凝膠的制備及其物化性能:以廢棄棉纖維作為纖維素原料,N,N-亞甲基雙丙烯酰胺為交聯(lián)劑,采用冷凍干燥技術(shù)制備出具有三維連通多孔結(jié)構(gòu)的纖維素氣凝膠。研究發(fā)現(xiàn),纖維素溶液濃度對其凝膠化時間、氣凝膠的微觀結(jié)構(gòu)及力學(xué)性能等均具有顯著影響。室溫條件下,當(dāng)纖維素濃度從2 wt%提高到4 wt%時,凝膠化時間從265 min縮短到165 min;所得纖維素氣凝膠的孔徑由0.05-4μm增大至200μm,其密度相應(yīng)的由0.027增加至0.056 g cm~(-3),孔隙率均高達(dá)96%以上,呈現(xiàn)出良好的三維多孔結(jié)構(gòu);同時,所制備的纖維素氣凝膠具有優(yōu)異的力學(xué)性能,當(dāng)其壓縮形變?yōu)?0%時,纖維素氣凝膠(2-4wt%)的壓縮強(qiáng)度達(dá)到1.10-3.85 MPa。(2)疏水性纖維素氣凝膠的制備及其油水分離性能:采用化學(xué)氣相沉積法(CVD)對濃度為2 wt%的纖維素氣凝膠進(jìn)行硅烷化改性,得到疏水性纖維素氣凝膠。FTIR、XPS等分析結(jié)果表明,MTCS與纖維素分子表面的羥基形成了C-O-Si共價結(jié)合,從而賦予了纖維素氣凝膠優(yōu)異、持久的疏水性能。接觸角測試發(fā)現(xiàn),經(jīng)硅烷化改性的纖維素氣凝膠表面水接觸角達(dá)到141°,內(nèi)部的接觸角也達(dá)到了128.4°,5天后,其表面接觸角仍保持在131°。這主要得益于纖維素氣凝膠相互貫通的多孔網(wǎng)絡(luò)結(jié)構(gòu);對不同油類和非極性有機(jī)溶劑的吸附性能研究發(fā)現(xiàn),疏水性纖維素氣凝膠呈現(xiàn)出優(yōu)良的油水分離能力,其對泵油、植物油、氯仿和甲苯的吸附量分別高達(dá)59.32、55.85、46.23和40.16 g g~(-1);此外,通過簡單的吸收擠壓方式即可以實(shí)現(xiàn)循環(huán)油水分離,經(jīng)十次循環(huán)后,疏水性纖維素氣凝膠對泵油和氯仿的吸附量仍分別達(dá)到37.5 g g~(-1)和38 g g~(-1),具有良好的循環(huán)使用性能。(3)CE/GO/Cu_2O三元雜化氣凝膠的制備及其光催化性能:將纖維素氣凝膠的大比表面積和高吸附能力與氧化亞銅(Cu2O)的可見光催化活性相結(jié)合,采用化學(xué)原位沉積法制備了CE/GO/Cu_2O三元雜化氣凝膠。SEM觀察發(fā)現(xiàn),正八面體的Cu_2O納米顆粒均勻地鑲嵌在三元雜化氣凝膠的孔壁上,有效地抑制了納米顆粒的團(tuán)聚;UV-vis漫反射光譜和PL光譜分析表明,與純Cu_2O相比,纖維素氣凝膠和氧化石墨烯的引入,不僅擴(kuò)展了CE/GO/Cu_2O三元雜化氣凝膠的光吸收能力,同時還提高了光生電子和空穴的分離效率;經(jīng)350 W氙燈模擬光照120分鐘,MO的光催化降解率可達(dá)92%,經(jīng)5次循環(huán)后,對MO的光催化降解率仍保持在80%,展現(xiàn)出良好的光催化穩(wěn)定性。本論文以廢棄棉纖維為原料,采用綠色、溫和、簡單的工藝方法制備得到了具有相互貫通三維多孔結(jié)構(gòu)的纖維素氣凝膠。經(jīng)功能化改性,分別獲得了具有疏水性的纖維素氣凝膠及具有光催化活性的纖維素復(fù)合氣凝膠,并研究了其在油水分離、有機(jī)染料的可見光催化降解中的應(yīng)用潛能。論文研究結(jié)果對實(shí)現(xiàn)纖維素資源在水環(huán)境控制與治理中的應(yīng)用提供了理論依據(jù)和技術(shù)支持。
[Abstract]:In the context of the increasing shortage of petrochemical resources and the worsening environmental problems all over the world, the utilization of abundant agricultural and forestry biomass resources, the development of environmentally friendly, recyclable biomass based functional materials, and the maximum replacement or partial substitution of petroleum based materials, should be used in various fields, which have important theoretical significance and reality. Cellulose is the most abundant natural polymer material on the earth. It has many excellent properties, such as renewable, biodegradable, biocompatible, mechanical properties, chemical modification and so on. Therefore, the use of green chemical technology, the research and development of cellulose based functional materials has been the chemical, material, energy environment, biological medicine. In this paper, a low density, high porosity cellulose aerogel was prepared by green, mild and simple technology, and the effects of different cellulose concentration on its morphological structure and physicochemical properties were investigated by using the waste cotton fiber as the cellulose material, and on this basis, the methyl three chlorosilane (M) was used. TCS) cellulose aerogels were chemically modified, hydrophobic cellulose aerogels were prepared, and the oil and water separation properties of hydrophobic cellulose aerogels were studied. On the other hand, cellulose / graphene oxide / copper oxide (CE/GO/Cu_2O) three element hybrid aerogels were prepared by chemical in situ deposition, and the three element hybrid fibers were further studied. Photocatalytic degradation of organic dye methyl orange by plain aerogels. The results are as follows: (1) the preparation and physicochemical properties of cellulose aerogels: cellulose as raw material, N, N- methylene double acrylamide as crosslinking agent, and the preparation of cellulose with three-dimensional connected porous structure by freeze drying technology It is found that the concentration of cellulose solution has significant influence on the gelation time, the microstructure and mechanical properties of the aerogels. When the concentration of cellulose is increased from 2 wt% to 4 wt%, the gelation time is shortened from 265 min to 165 min, and the pore size of the fibrin aerogel is increased from 0.05-4 to 200 mu m, and the density of the fibrin aerogel is more than 200 mu m. The corresponding degree increases from 0.027 to 0.056 g cm~ (-3), the porosity is above 96%, showing a good three-dimensional porous structure. At the same time, the prepared cellulose aerogels have excellent mechanical properties. When the compression deformation is 80%, the compressive strength of the cellulose aerogel (2-4wt%) reaches to 1.10-3.85 MPa. (2) hydrophobic cellulose aerogel. Preparation and oil and water separation performance: chemical vapor deposition (CVD) was used to silane the cellulose aerogel with a concentration of 2 wt%, and the hydrophobic cellulose aerogel.FTIR and XPS were obtained. The results showed that the MTCS was combined with the hydroxyl group on the surface of the cellulose molecule, which gave the cellulose aerogel excellent and lasting. The contact angle test found that the surface water contact angle of the silicone modified cellulose aerogels reached 141 degrees, and the internal contact angle reached 128.4 degrees, and the contact angle of the surface remained at 131 degrees after 5 days. This was mainly due to the porous network structure of the cellulose aerogels, and the different oil and non polar organic solvents. The adsorption properties of the hydrophobic cellulose aerogels show a good oil water separation ability. The adsorption capacity of the oil, vegetable oil, chloroform and toluene is up to 59.32,55.85,46.23 and 40.16 g g~ (-1), respectively. In addition, the cyclic oil and water can be separated by a simple absorption and extrusion method. After ten cycles, the hydrophobic fiber can be obtained. The adsorption capacity of the prime aerogels to pump oil and chloroform still reached 37.5 g g~ (-1) and 38 g g~ (-1), and has good recycling performance. (3) the preparation and photocatalytic performance of CE/GO/Cu_2O three hybrid aerogels: the combination of the large surface area and high adsorption energy of the cellulose aerogel with the visible photocatalytic activity of copper oxide (Cu2O). The CE/GO/Cu_2O three element hybrid aerogel.SEM was prepared by chemical in situ deposition. It was found that the Cu_2O nanoparticles of the positive eight sides were inlaid evenly on the pore wall of the three element hybrid aerogels, which effectively inhibited the agglomeration of the nanoparticles. The UV-vis diffuse reflectance spectrum and the PL spectrum analysis showed that the cellulose aerogels and oxidation were compared with the pure Cu_2O. The introduction of graphene not only expands the light absorption capacity of the CE/GO/Cu_2O three element hybrid aerogels, but also improves the separation efficiency of photogenerated electrons and holes. The photocatalytic degradation rate of MO can reach 92% after 120 minutes of simulated illumination by 350 W xenon lamp. After 5 cycles, the photocatalytic degradation rate of MO remains at 80%, showing a good photocatalytic stability. In this paper, the cellulose aerogels with three-dimensional porous structure were prepared by green, mild and simple process using waste cotton fiber as raw materials. The hydrophobic cellulose aerogels and cellulose composite aerogels with photocatalytic activity were obtained by functional modification. The application potential of oil and water separation and visible photocatalytic degradation of organic dyes. The results of the paper provide theoretical basis and technical support for the application of cellulose resources in the control and treatment of water environment.
【學(xué)位授予單位】:浙江理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X703;TQ427.26
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐超;周斌;解德濱;沈軍;倪星元;徐展;;超低密度SiO2氣凝膠快速制備的新方法[J];材料導(dǎo)報;2006年06期
2 何方;趙紅雨;趙海雷;崔巍;徐三魁;;氣凝膠材料研究的新進(jìn)展[J];材料導(dǎo)報;2007年12期
3 ;氣凝膠,改變世界的神奇材料[J];高科技與產(chǎn)業(yè)化;2008年01期
4 沈軍,王玨,吳翔;氣凝膠──一種結(jié)構(gòu)可控的新型功能材料[J];材料科學(xué)與工程;1994年03期
5 王玨,沈軍;有機(jī)氣凝膠和碳?xì)饽z的研究與應(yīng)用[J];材料導(dǎo)報;1994年04期
6 王玨,,周斌,吳衛(wèi)東,沈軍;硅氣凝膠材料的研究進(jìn)展[J];功能材料;1995年01期
7 ;利用離子液體制造二氧化硅氣凝膠[J];現(xiàn)代化工;2000年08期
8 李冀輝,胡勁松;有機(jī)氣凝膠研究進(jìn)展(Ⅰ)──有機(jī)氣凝膠發(fā)現(xiàn)、制備與分析[J];河北師范大學(xué)學(xué)報;2001年03期
9 李冀輝,胡勁松;有機(jī)氣凝膠研究進(jìn)展(Ⅱ)——有機(jī)氣凝膠的特性與應(yīng)用[J];河北師范大學(xué)學(xué)報;2001年04期
10 劉茜;固體空氣——?dú)饽z在服裝和建筑中的應(yīng)用[J];國外紡織技術(shù);2004年05期
相關(guān)會議論文 前10條
1 蔡杰;張俐娜;Shigenori Kuga;;高強(qiáng)度纖維素/SiO2氣凝膠的結(jié)構(gòu)和性能[A];2009年全國高分子學(xué)術(shù)論文報告會論文摘要集(下冊)[C];2009年
2 姚先周;胡子君;孫陳誠;李俊寧;張宏波;;二氧化硅氣凝膠微結(jié)構(gòu)的熱設(shè)計(jì)[A];復(fù)合材料:創(chuàng)新與可持續(xù)發(fā)展(下冊)[C];2010年
3 劉世明;王慧;曾令可;;納米SiO_2氣凝膠的性能表征與分形維數(shù)[A];中國顆粒學(xué)會第六屆學(xué)術(shù)年會暨海峽兩岸顆粒技術(shù)研討會論文集(下)[C];2008年
4 鄧忠生;黃耀東;魏建東;楊靖;王玨;沈軍;陳玲燕;吳愛梅;;二氧化硅氣凝膠的表面修飾研究[A];第四屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];2001年
5 劉寧;符若文;;球狀有機(jī)氣凝膠及其炭氣凝膠的結(jié)構(gòu)[A];2004年中國材料研討會論文摘要集[C];2004年
6 常智;趙海雷;何方;仇衛(wèi)華;周國治;曲選輝;;摻雜纖維的硅石氣凝膠的結(jié)構(gòu)與性能[A];華北地區(qū)硅酸鹽學(xué)會第八屆學(xué)術(shù)技術(shù)交流會論文集[C];2005年
7 王玨;沈軍;張波;蔣偉陽;陸獻(xiàn)平;;有機(jī)氣凝膠的熱傳輸機(jī)理研究[A];第二屆中國功能材料及其應(yīng)用學(xué)術(shù)會議論文集[C];1995年
8 任洪波;張林;杜愛民;;快速制備塊狀氧化鐵氣凝膠的研究[A];第八屆全國核靶技術(shù)學(xué)術(shù)交流會論文摘要集[C];2004年
9 楊大祥;馮堅(jiān);周新貴;張長瑞;王娟;張浩;;低溫下酸/堿兩步法制備氧化硅氣凝膠[A];全國第三屆溶膠—凝膠科學(xué)技術(shù)學(xué)術(shù)會議論文摘要集[C];2004年
10 趙南;馮堅(jiān);姜勇剛;高慶福;馮軍宗;;耐高溫氣凝膠隔熱材料[A];2011·中國絕熱節(jié)能材料協(xié)會年會論文集[C];2011年
相關(guān)重要報紙文章 前10條
1 本報記者 潘未末;年創(chuàng)產(chǎn)值20億 氣凝膠蘊(yùn)含驚人商機(jī)[N];深圳特區(qū)報;2009年
2 本報記者 陳龍;“藍(lán)煙”裊裊向市場[N];中國航天報;2012年
3 西藏圣一新能源股份公司研究院院長 李光武;氣凝膠:可以改變世界的多功能新材料[N];中國建材報;2013年
4 宏文;二氧化硅氣凝膠有望產(chǎn)業(yè)化[N];中國建材報;2013年
5 戚翔;世界最輕固體將改變世界[N];工人日報;2007年
6 通訊員 何秦江;投資兩億 年產(chǎn)三噸[N];紹興日報;2006年
7 彭紅;中國氣凝膠產(chǎn)品打破美國壟斷局面[N];新華每日電訊;2008年
8 彭紅;氣凝膠產(chǎn)業(yè)化開啟納諾高科有望成最大供應(yīng)商[N];中國質(zhì)量報;2008年
9 通訊員 周煒 朱海洋 記者 潘劍凱;浙大實(shí)驗(yàn)室誕生超輕氣凝膠[N];光明日報;2013年
10 閆潔;女科學(xué)家一次偶然經(jīng)歷,稻殼變廢為寶[N];新華每日電訊;2008年
相關(guān)博士學(xué)位論文 前10條
1 何松;二氧化硅氣凝膠及其復(fù)合材料制備與吸附應(yīng)用研究[D];中國科學(xué)技術(shù)大學(xué);2016年
2 龍濤;塊狀鈦基氣凝膠的制備及光催化降解廢水中有機(jī)污染物實(shí)驗(yàn)研究[D];中國地質(zhì)大學(xué);2016年
3 鄭文芝;二氧化硅氣凝膠研制及其結(jié)構(gòu)性能研究[D];華南理工大學(xué);2010年
4 趙忠強(qiáng);氧化物氣凝膠的制備、結(jié)構(gòu)和性質(zhì)的研究[D];山東大學(xué);2008年
5 徐海s
本文編號:1982333
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1982333.html