帶式輸送機反饋增壓驅(qū)動裝置的研究
本文選題:摩擦牽引力 + 增壓帶; 參考:《太原理工大學(xué)》2017年碩士論文
【摘要】:帶式輸送機是依靠輸送帶的張力和輸送帶與驅(qū)動滾筒之間的摩擦來產(chǎn)生牽引力的。一旦摩擦牽引力不能滿足帶式輸送機正常運行的需求,輸送帶與驅(qū)動滾筒之間就會發(fā)生打滑而不能正常運行,甚至?xí)l(fā)生產(chǎn)事故。為保證帶式輸送機的正常工作運行,輸送帶就必須具備足夠大的張緊力,因而不得不選用較高強度的輸送帶,增加了設(shè)備的投資和運行的成本。本文研究通過在帶式輸送機上設(shè)置反饋增壓驅(qū)動裝置的方式來提高帶式輸送機的摩擦驅(qū)動性能。使用該裝置后,帶式輸送機能夠以較小的輸送帶初張力獲得較大的摩擦牽引力,并且極限摩擦牽引力的值能夠響應(yīng)負(fù)載的變化,降低了輸送帶發(fā)生打滑的風(fēng)險。本文的主要工作如下:1、深入分析了帶式輸送機的摩擦驅(qū)動原理。設(shè)計增壓摩擦驅(qū)動裝置使增壓帶能夠作用在驅(qū)動滾筒處的輸送帶弧段上。在考慮增壓帶張力的前提下,推導(dǎo)出了增壓摩擦驅(qū)動的歐拉公式及摩擦牽引力計算公式。2、設(shè)計反饋裝置,通過反饋裝置使增壓帶的張力能夠反饋輸送帶張力的變化。對反饋裝置進(jìn)行受力分析,確定了反饋系數(shù)與回轉(zhuǎn)中心位置的關(guān)系。并分析了影響反饋裝置的強度、剛度、偏轉(zhuǎn)角以及動態(tài)響應(yīng)的因素。3、應(yīng)用控制理論對反饋增壓驅(qū)動的原理進(jìn)行了分析。對反饋增壓驅(qū)動的輸送帶不打滑條件進(jìn)行了分析。對不同反饋系數(shù)取值下反饋增壓驅(qū)動裝置對帶式輸送機各項驅(qū)動性能指標(biāo)帶來的變化進(jìn)行了分析,并計算了其在實際應(yīng)用中帶來的效益。4、利用RecurDyn建立帶式輸送機和反饋增壓驅(qū)動裝置的仿真模型。通過仿真得到在設(shè)置反饋增壓驅(qū)動裝置前后,以及在不同反饋系數(shù)取值下,輸送帶速度和張力的變化情況,并對仿真結(jié)果進(jìn)行了分析。仿真結(jié)果表明:反饋增壓驅(qū)動裝置能夠提高帶式輸送機的摩擦驅(qū)動性能,并且反饋系數(shù)的越大帶式輸送機的摩擦驅(qū)動性能就越好。RecurDyn仿真結(jié)果很好地符合公式計算結(jié)果。本文的為提高帶式輸送機摩擦牽引力的研究及反饋增壓驅(qū)動裝置的設(shè)計提供了一定的理論依據(jù)。
[Abstract]:Belt conveyors rely on the tension of the conveyor belt and the friction between the belt and the driving drum to produce traction. Once the friction traction can not meet the requirements of the belt conveyor running normally, the conveyor belt and the driving drum will slip and can not operate normally, and even lead to production accidents. In order to ensure the normal operation of the belt conveyor, the belt must have enough tension, so it has to choose a higher strength conveyor belt, which increases the investment and operation cost of the equipment. In this paper, the friction driving performance of belt conveyor is improved by setting the feedback booster drive device on the belt conveyor. After the use of the device, the belt conveyor can obtain greater friction traction with small initial tension of the conveyor belt, and the value of the limit friction traction force can respond to the change of load, thus reducing the risk of slip of the conveyor belt. The main work of this paper is as follows: 1. The friction driving principle of belt conveyor is deeply analyzed. A pressurized friction drive is designed to enable the booster belt to act on the conveyor belt arc at the driving drum. On the premise of considering the tension of the pressurized belt, the Euler formula of the supercharged friction drive and the calculation formula of friction traction force are derived. The feedback device is designed, through which the tension of the pressurized belt can feedback the change of the belt tension. The relationship between the feedback coefficient and the position of the center of rotation is determined by the force analysis of the feedback device. The factors affecting the strength, stiffness, deflection angle and dynamic response of the feedback device are analyzed. The control theory is applied to analyze the principle of feedback boost drive. The non-slip conditions of the conveyor belt driven by feedback pressurization are analyzed. The change of driving performance index of belt conveyor caused by feedback booster drive device under different feedback coefficient is analyzed. The benefit of this method in practical application is calculated. The simulation model of belt conveyor and feedback booster drive device is established by using RecurDyn. The changes of the speed and tension of the conveyor belt before and after the setting of the feedback booster drive device and under the different feedback coefficients are obtained by simulation, and the simulation results are analyzed. The simulation results show that the feedback booster drive device can improve the friction driving performance of belt conveyor, and the larger the feedback coefficient is, the better the friction driving performance of belt conveyor is. RecurDyn simulation results are in good agreement with the formula calculation results. This paper provides a theoretical basis for improving the friction traction of belt conveyor and the design of feedback booster drive device.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TD528.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許明華;戴莉;李光布;;基于RecurDyn的輸送機三維建模方法的研究[J];起重運輸機械;2015年12期
2 袁紅兵;亢石磊;;基于RecurDyn的帶式輸送機啟動階段仿真方法[J];煤礦機械;2015年01期
3 董立紅;趙鵬兵;;帶式輸送機拉緊裝置張力的灰色預(yù)測PID控制[J];煤炭學(xué)報;2013年02期
4 鄭建興;張相炎;;基于RecurDyn的同步帶彈箱動態(tài)特性仿真研究[J];火炮發(fā)射與控制學(xué)報;2010年04期
5 朱立平;蔣衛(wèi)良;;適用于我國煤礦帶式輸送機典型機型的研究[J];煤炭學(xué)報;2010年11期
6 曹愛霞;李全;;驅(qū)動滾筒包膠的凹坑吸附結(jié)構(gòu)設(shè)計[J];礦山機械;2010年13期
7 胡慶勝;;線摩擦驅(qū)動理論設(shè)計強力帶式輸送機的優(yōu)越性[J];礦山機械;2009年24期
8 高學(xué)棟;王曉華;;陶瓷襯套在帶式輸送機驅(qū)動滾筒上的應(yīng)用[J];礦山機械;2007年02期
9 李鉻;李春廣;梁睦;武福軍;;煤礦帶式輸送機事故分析及防護(hù)措施[J];中國安全科學(xué)學(xué)報;2006年03期
10 毛君;王晶;;簡述帶式輸送機的拉緊裝置[J];煤礦機械;2006年01期
相關(guān)博士學(xué)位論文 前1條
1 隋秀華;傳動滾筒仿生摩擦學(xué)設(shè)計與性能分析研究[D];山東科技大學(xué);2008年
相關(guān)碩士學(xué)位論文 前7條
1 張海平;輸送帶摩擦學(xué)行為及動力學(xué)特性研究[D];太原理工大學(xué);2016年
2 李顯榮;基于RecurDyn的帶式輸送機打滑特性研究[D];太原理工大學(xué);2015年
3 賀金虎;基于ADAMS的帶式輸送機動特性仿真分析研究[D];太原理工大學(xué);2014年
4 李方武;機械式挖掘機工作裝置的仿真分析[D];東北大學(xué);2011年
5 李全;驅(qū)動滾筒仿生表面增摩技術(shù)研究[D];山東科技大學(xué);2010年
6 馬濤;基于虛擬樣機技術(shù)的礦用掘進(jìn)機行走減速器仿真研究[D];太原理工大學(xué);2008年
7 鄭慧君;帶式輸送機集中監(jiān)控系統(tǒng)及驅(qū)動控制系統(tǒng)的研究[D];東北大學(xué);2008年
,本文編號:1981681
本文鏈接:http://sikaile.net/shoufeilunwen/boshibiyelunwen/1981681.html